Communications in Mathematical Physics

, Volume 303, Issue 2, pp 361–383 | Cite as

Global Well-Posedness for the 2D Micro-Macro Models in the Bounded Domain

  • Yongzhong Sun
  • Zhifei ZhangEmail author


In this paper, we establish new a priori estimates for the coupled 2D Navier-Stokes equations and Fokker-Planck equation. As its applications, we prove the global existence of smooth solutions for the coupled 2D micro-macro models for polymeric fluids in the bounded domain.


Bounded Domain Global Existence Strong Solution Smooth Solution Energy Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrett J.W., Schwab C., Süli E.: Existence of global weak solutions for some polymeric flow models. Math. Models Methods Appl. Sci. 15, 939–983 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bird R.B., Curtis C.F., Armstrong R.C., Hassager O.: Dynamics of Polymeric Liquids, Volume 2: Kinetic Theory. Weiley Interscience, New York (1987)Google Scholar
  3. 3.
    Bahouri H., Chemin J.Y.: Équations de transport relatives á des champs de vecteurs non-lipschitziens et mécanique des fluides. Arch. Rational Mech. Anal. 127, 159–181 (1994)CrossRefzbMATHADSMathSciNetGoogle Scholar
  4. 4.
    Chemin J.Y., Masmoudi N.: About lifespan of regular solutions of equations related to viscoelastic fluid. SIAM. J. Math. Anal. 33, 84–112 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chen Y., Zhang P.: The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions. Comm. Part. Diff. Eq. 31, 1793–1810 (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Constantin P.: Nonlinear Fokker-Planck Navier-Stokes systems. Commun. Math. Sci. 3, 531–544 (2005)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Constantin P., Fefferman C., Titi E., Zarnescu A.: Regularity for coupled two-dimensional nonlinear Fokker-Planck and Navier-Stokes systems. Comm. Math. Phys. 270, 789–811 (2007)CrossRefzbMATHADSMathSciNetGoogle Scholar
  8. 8.
    Constantin P., Masmoudi N.: Global well-posdness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D. Comm. Math. Phys. 278, 179–191 (2008)CrossRefzbMATHADSMathSciNetGoogle Scholar
  9. 9.
    Constantin P., Seregin G.: Global Regulatity of Solutions of Coupled Navier-Stokes Equations and Nolinear Fokker-Planck Equations. Discrete Contin. Dyn. Syst. 26, 1185–1196 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Doi M., Edwards S.F.: The Theory of Polymer Dynamics. Oxford Science Publication, Oxford (1986)Google Scholar
  11. 11.
    Du Q., Liu C., Yu P.: FENE dumbbell model and its several linear and nonlinear closure approximations. Multiscale Model. Simul. 4, 709–731 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Weinan E., Li T.J., Zhang P.W.: Well-posedness for the dumbbell model of polymeric fluids. Comm. Math. Phys. 248, 409–427 (2004)zbMATHADSMathSciNetGoogle Scholar
  13. 13.
    Galdi, G.P.: An introduction to the mathematical theory of Navier-Stokes equations, Vol. 1, Springer Tracts in Natural Philosophy, Vol. 38, Berlin-Heidelberg-New York: Springer, 1994Google Scholar
  14. 14.
    Fernández-Cara, E., Guillén, F., Ortega, R.R.: Some theoretical results concerning non-Newtonian fluids of the Oldroyd kind. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)26, 1–29 (1998)Google Scholar
  15. 15.
    Fernández-Cara, E., Guillén, F., Ortega, R.R.: Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind. Handbook of numerical analysis, Vol. 8, Amsterdam: North-Holland, 2002, pp. 543–661Google Scholar
  16. 16.
    Giga Y., Sohr H.: Abstract L p estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Guillopé C., Saut J.C.: Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15, 849–869 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Guillopé C., Saut J.C.: Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO Modél. Math. Anal. Numér. 24, 369–401 (1990)zbMATHGoogle Scholar
  19. 19.
    Jourdain B., Leliévre T., Le Bris C.: Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal. 209, 162–193 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Jourdain B., Leliévre T., Le Bris C., Otto F.: Long-time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. Anal. 181, 97–148 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, London (1969)zbMATHGoogle Scholar
  22. 22.
    Lei Z., Liu C., Zhou Y.: Global solutions for incompressible viscoelastic fluids. Arch. Rat. Mech. Anal. 188, 371–398 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Lei Z., Masmoudi N., Zhou Y.: Remarks on the Blowup criteria for Oldroyd models. Jour. Diff. Eqs. 248, 328–341 (2009)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Lin F., Liu C., Zhang P.: On hydrodynamics of viscoelastic fluids. Comm. Pure Appl. Math. 58, 1437–1471 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Lin F., Liu C., Zhang P.: On a Micro-Macro Model for Polymeric Fluids near Equilibrium. Comm. Pure Appl. Math. 60, 838–866 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Lin F., Zhang P.: The FENE dumbell model near equilibrium. Acta Math. Sin. (Engl. Ser.) 24, 529–538 (2008)CrossRefzbMATHADSMathSciNetGoogle Scholar
  27. 27.
    Lin F., Zhang P.: On the initial-boundary value problem of the incompressible viscoelastic fluid system. Comm. Pure Appl. Math. 61, 539–558 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Lin F., Zhang P., Zhang Z.: On the global existence of smooth solution to the 2-D FENE dumbbell model. Comm. Math. Phys. 277, 531–553 (2008)CrossRefzbMATHADSMathSciNetGoogle Scholar
  29. 29.
    Lions P.L., Masmoudi N.: Global solutions for some Oldroyd models of non-Newtonian flows. Chinese Ann. Math. Ser. B 21, 131–146 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Lions P.L., Masmoudi N.: Global existence of weak solutions to some micro-macro models. C. R. Math. Acad. Sci. Paris 345, 15–20 (2007)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Masmoudi N.: Well-posedness for the FENE dumbbell model of polymeric flows. Comm. Pure Appl. Math. 61, 1685–1714 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Masmoudi N., Zhang P., Zhang Z.: Global well-posedness for 2D polymeric fluid models and growth estimate. Phys. D 237, 1663–1675 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Renardy M.: An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J. Math. Anal. 22, 313–327 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Zhang H., Zhang P.W.: Local existence for the FENE-dumbbell model of polymeric fluids. Arch. Ration. Mech. Anal. 181, 373–400 (2006)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsNanjing UniversityNanjingP. R. China
  2. 2.School of Mathematical SciencesPeking UniversityBeijingP. R. China

Personalised recommendations