Skip to main content
Log in

Aharonov-Bohm Effect and High-Velocity Estimates of Solutions to the Schrödinger Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Aharonov-Bohm effect is a fundamental issue in physics that has been extensively studied in the literature and is discussed in most of the textbooks in quantum mechanics. The issues at stake are what are the fundamental electromagnetic quantities in quantum physics, if magnetic fields can act at a distance on charged particles and if the magnetic potentials have a real physical significance. The Aharonov-Bohm effect is a very controversial issue. From the experimental side the issues were settled by the remarkable experiments of Tonomura et al. (Phys Rev Lett 48:1443–1446, 1982; Phys Rev Lett 56:792–795, 1986) with toroidal magnets that gave a strong experimental evidence of the physical existence of the Aharonov-Bohm effect, and by the recent experiment of Caprez et al. (Phys Rev Lett 99:210401, 2007) that shows that the results of the Tonomura et al. experiments can not be explained by the action of a force. Aharonov and Bohm (Phys Rev 115:485-491, 1959) proposed an Ansatz for the solution to the Schrödinger equation in simply connected regions of space where there are no electromagnetic fields. It consists of multiplying the free evolution by the Dirac magnetic factor. The Aharonov-Bohm Ansatz predicts the results of the experiments of Tonomura et al. and of Caprez et al. Recently in Ballesteros and Weder (Math Phys 50:122108, 2009) we gave the first rigorous proof that the Aharonov-Bohm Ansatz is a good approximation to the exact solution for toroidal magnets under the conditions of the experiments of Tonomura et al. We provided a rigorous, simple, quantitative, error bound for the difference in norm between the exact solution and the Aharonov-Bohm Ansatz. In this paper we prove that these results do not depend on the particular geometry of the magnets and on the velocities of the incoming electrons used on the experiments, and on the gaussian shape of the wave packets used to obtain our quantitative error bound. We consider a general class of magnets that are a finite union of handlebodies. Each handlebody is diffeomorphic to a torus or a ball, and some of them can be patched though the boundary. We formulate the Aharonov-Bohm Ansatz that is appropriate to this general case and we prove that the exact solution to the Schrödinger equation is given by the Aharonov-Bohm Ansatz up to an error bound in norm that is uniform in time and that decays as a constant divided by v ρ, 0 < ρ < 1, with v the velocity. The results of Tonomura et al., of Caprez et al., our previous results and the results of this paper give a firm experimental and theoretical basis to the existence of the Aharonov-Bohm effect and to its quantum nature. Namely, that magnetic fields act at a distance on charged particles, and that this action at a distance is carried by the circulation of the magnetic potential which gives a real physical significance to magnetic potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams R.A., Fournier J.J.F.: Sobolev Spaces. Amsterdam Academic Press, Oxford (2003)

    MATH  Google Scholar 

  2. Agmon S.: Lectures on Elliptic Boundary Value Problems. Princeton, NJ, D. Van Nostrand (1965)

    MATH  Google Scholar 

  3. Aharonov Y., Bohm D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Ballesteros M., Weder R.: High-velocity estimates for the scattering operator and Aharonov-Bohm effect in three dimensions. Commun. Math. Phys. 285, 345–398 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Ballesteros, M., Weder, R.: The Aharonov-Bohm effect and Tonomura et al. experiments: Rigorous results. J. Math. Phys. 50, 122108 (2009) (54 pp)

    Google Scholar 

  6. Boyer T.H.: Darwin-Lagrangian analysis for the interaction of a point charge and a magnet: considerations related to the controversy regarding the Aharonov-Bohm and the Aharonov-Casher phase shifts. J. Phys. A: Math. Gen. 39, 3455–3477 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Bredon G.E.: Topology and Geometry. Springer-Verlag, New York (1993)

    MATH  Google Scholar 

  8. Caprez, A., Barwick, B., Batelaan, H.: Macroscopic test of the Aharonov-Bohm effect. Phys. Rev. Lett. 99, 210401 (2007) (4 pp.)

    Google Scholar 

  9. de Rham G.: Differentiable Manifolds. Springer-Verlag, Berlin (1984)

    Book  MATH  Google Scholar 

  10. Dirac P.: Quantized singularities in the electromagnetic field. Proc. R. Soc. A 133, 60–72 (1931)

    Article  ADS  MATH  Google Scholar 

  11. Enss V., Weder R.: The geometrical approach to multidimensional inverse scattering. J. Math. Phys. 36, 3902–3921 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Franz, W.: Elektroneninterferenzen im Magnetfeld. Verh. D. Phys. Ges. (3) 20, Nr.2, 65–66 (1939)

  13. Franz W.: Elektroneninterferenzen im Magnetfeld. Physikalische Berichte 21, 686 (1940)

    Google Scholar 

  14. Greenberg M.J., Harper J.R.: Algebraic Topology, A First Course. Addison-Wesley, New York (1981)

    MATH  Google Scholar 

  15. Hatcher A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  16. Hegerfeldt, G.C., Neumann, J.T.: The Aharonov–Bohm effect: the role of tunneling and associated forces. J. Phys. A: Math. Theor. 41, 155305 (2008) (11pp)

    Google Scholar 

  17. Helffer, B.: Effet d’Aharonov-Bohm sur un état borné de l’équation de Schrödinger. (French) [The Aharonov-Bohm effect on a bound state of the Schrödinger equation], Commun. Math. Phys. 119, 315–329 (1988)

  18. Kato T.: Perturbation Theory for Linear Operators Second Edition. Springer-Verlag, Berlin (1976)

    Book  MATH  Google Scholar 

  19. Nicoleau F.: An inverse scattering problem with the Aharonov-Bohm effect. J. Math. Phys. 41, 5223–5237 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Olariu S., Popescu I.I.: The quantum effects of electromagnetic fluxes. Rev. Modern. Phys. 57, 339–436 (1985)

    Article  ADS  Google Scholar 

  21. Osakabe N., Matsuda T., Kawasaki T., Endo J., Tonomura A., Yano S., Yamada H.: Experimental confirmation of Aharonov-Bohm effect using a toroidal magnetic field confined by a superconductor. Phys. Rev. A 34, 815–822 (1986)

    Article  ADS  Google Scholar 

  22. Peshkin, M., Tonomura, A.: The Aharonov-Bohm Effect. Lecture Notes in Phys. 340, Berlin: Springer, 1989

  23. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis. Self-Adjointness. New York: Academic Press, 1975

  24. Reed M., Simon B.: Methods of Modern Mathematical Physics. III. Scattering Theory. Academic Press, New York (1979)

    MATH  Google Scholar 

  25. Roux Ph.: Scattering by a toroidal coil. J. Phys. A: Math. Gen. 36, 5293–5304 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Roux Ph., Yafaev D.: On the mathematical theory of the Aharonov-Bohm effect. J. Phys. A: Math. Gen. 35, 7481–7492 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Ruijsenaars S.N.M.: The Aharonov-Bohm effect and scattering theory. Ann. Phys. (New York) 146, 1–34 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Tonomura A.: Direct observation of hitherto unobservable quantum phenomena by using electrons. Proc. Natl. Acad. Sci. U.S.A. 102, 14952–14959 (2005)

    Article  ADS  Google Scholar 

  29. Tonomura A., Matsuda T., Suzuki R., Fukuhara A., Osakabe N., Umezaki H., Endo J., Shinagawa K., Sugita Y., Fujiwara H.: Observation of Aharonov-Bohm effect by electron holography. Phys. Rev. Lett. 48, 1443–1446 (1982)

    Article  ADS  Google Scholar 

  30. Tonomura A., Osakabe N., Matsuda T., Kawasaki T., Endo J., Yano S., Yamada H.: Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. Phys. Rev. Lett. 56, 792–795 (1986)

    Article  ADS  Google Scholar 

  31. Tonomura A., Nori F.: Disturbance without the force. Nature 452–20, 298–299 (2008)

    Article  Google Scholar 

  32. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)

    Google Scholar 

  33. Warner F.W.: Foundations of Differentiable Manifolds. Springer-Verlag, Berlin (1983)

    MATH  Google Scholar 

  34. Weder R.: The Aharonov-Bohm effect and time-dependent inverse scattering theory. Inverse Problems 18, 1041–1056 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Yafaev D.R.: Scattering matrix for magnetic potentials with Coulomb decay at infinity. Integral Equations Operator Theory 47, 217–249 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yafaev D.R.: Scattering by magnetic fields. St. Petersburg Math. J. 17, 875–895 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Weder.

Additional information

Communicated by I.M. Sigal

To Mario Castagnino on the occasion of his 75th birthday

Research partially supported by CONACYT under Project CB-2008-01-99100.

Fellow, Sistema Nacional de Investigadores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballesteros, M., Weder, R. Aharonov-Bohm Effect and High-Velocity Estimates of Solutions to the Schrödinger Equation. Commun. Math. Phys. 303, 175–211 (2011). https://doi.org/10.1007/s00220-010-1166-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1166-9

Keywords

Navigation