Advertisement

Communications in Mathematical Physics

, Volume 301, Issue 3, pp 661–707 | Cite as

Nice Inducing Schemes and the Thermodynamics of Rational Maps

  • Feliks PrzytyckiEmail author
  • Juan Rivera-Letelier
Open Access
Article

Abstract

We study the thermodynamic formalism of a complex rational map f of degree at least two, viewed as a dynamical system acting on the Riemann sphere. More precisely, for a real parameter t we study the existence of equilibrium states of f for the potential \({-t {\rm ln} \left|f^{\prime} \right|}\) , and the analytic dependence on t of the corresponding pressure function. We give a fairly complete description of the thermodynamic formalism for a large class of rational maps, including well known classes of non-uniformly hyperbolic rational maps, such as (topological) Collet-Eckmann maps, and much beyond. In fact, our results apply to all non-renormalizable polynomials without indifferent periodic points, to infinitely renormalizable quadratic polynomials with a priori bounds, and all quadratic polynomials with real coefficients. As an application, for these maps we describe the dimension spectrum for Lyapunov exponents, and for pointwise dimensions of the measure of maximal entropy, and obtain some level-1 large deviations results. For polynomials as above, we conclude that the integral means spectrum of the basin of attraction of infinity is real analytic at each parameter in \({\mathbb{R}}\) , with at most two exceptions.

Keywords

Lyapunov Exponent Periodic Point Pressure Function Conformal Measure Pointwise Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to Weixiao Shen and Daniel Smania for their help with references, Weixiao Shen again and Genadi Levin for their help with the non-renormalizable case and Henri Comman for his help with the large deviations results. We also thank Neil Dobbs, Godofredo Iommi, Jan Kiwi and Mariusz Urbanski for useful conversations and comments. Finally, we are grateful to Krzysztof Baranski for making Fig. 1 and the referee for his suggestions and comments that helped to clarify some of the concepts introduced in the paper.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. AL08.
    Avila A., Lyubich M.: Hausdorff dimension and conformal measures of Feigenbaum Julia sets. J. Amer. Math. Soc. 21(2), 305–363 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  2. Bal00.
    Baladi, V.: Positive transfer operators and decay of correlations, Volume 16 of Advanced Series in Nonlinear Dynamics. River Edge, NJ: World Scientific Publishing Co. Inc., 2000Google Scholar
  3. BK98.
    Bruin H., Keller G.: Equilibrium states for S-unimodal maps. Erg. Th. Dynam. Syst. 18(4), 765–789 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  4. BMS03.
    Binder I., Makarov N., Smirnov S.: Harmonic measure and polynomial Julia sets. Duke Math. J. 117(2), 343–365 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  5. BS96.
    Baker I.N., Stallard G.M.: Error estimates in a calculation of Ruelle. Complex Variables Theory Appl. 29(2), 141–159 (1996)MathSciNetzbMATHGoogle Scholar
  6. BS05.
    Beliaev, D., Smirnov, S.: Harmonic measure on fractal sets. In: European Congress of Mathematics, Zürich: Eur. Math. Soc., 2005, pp. 41–59Google Scholar
  7. BT08.
    Bruin H., Todd M.: Equilibrium states for interval maps: potentials with sup \({\phi - {\rm inf} \phi < h_{\rm top}(f)}\) . Commun. Math. Phys. 283(3), 579–611 (2008)CrossRefMathSciNetADSzbMATHGoogle Scholar
  8. BT09.
    Bruin H., Todd M.: Equilibrium states for interval maps: the potential −t log |df|. Ann. Sci. École Norm. Sup. (4) 42, 559–600 (2009)MathSciNetzbMATHGoogle Scholar
  9. CL09.
    Cai H., Li S.: Distortion of interval maps and applications. Nonlinearity 22(10), 2353–2363 (2009)CrossRefMathSciNetADSzbMATHGoogle Scholar
  10. Com09.
    Comman H.: Strengthened large deviations for rational maps and full shifts, with unified proof. Nonlinearity 22(6), 1413–1429 (2009)CrossRefMathSciNetADSzbMATHGoogle Scholar
  11. CRL08.
    Comman, H., Rivera-Letelier, J.: Large deviation principles for non-uniformly hyperbolic rational maps. arXiv:0812.4761v1, to appear in Ergodic Theory Dynam. Systems, doi: 10.1017/s0143385709001163, 2010
  12. DMNU98.
    Denker M., Mauldin R.D., Nitecki Z., Urbański M.: Conformal measures for rational functions revisited. Fund. Math. 157(2-3), 161–173 (1998)MathSciNetzbMATHGoogle Scholar
  13. Dob08.
    Dobbs, N.: Measures with positive lyapunov exponent and conformal measures in rational dynamics. http://arXiv.org/abs/0804.3753v2 [math.DS], 2010, to appear in Trans. Amer. Math. Soc.
  14. Dob09.
    Dobbs N.: Renormalisation-induced phase transitions for unimodal maps. Commun. Math. Phys. 286(1), 377–387 (2009)CrossRefMathSciNetADSzbMATHGoogle Scholar
  15. DU91.
    Denker M., Urbański M.: Ergodic theory of equilibrium states for rational maps. Nonlinearity 4(1), 103–134 (1991)CrossRefMathSciNetADSzbMATHGoogle Scholar
  16. DZ98.
    Dembo, A., Zeitouni, O.: Large deviations techniques and applications, Volume 38 of Applications of Mathematics (New York). New York: Springer-Verlag, second edition, 1998Google Scholar
  17. Erë91.
    Erëmenko A.È.: Lower estimate in Littlewood’s conjecture on the mean spherical derivative of a polynomial and iteration theory. Proc. Amer. Math. Soc. 112(3), 713–715 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  18. Fis06.
    Fisher T.: Hyperbolic sets that are not locally maximal. Erg. Th. Dyn. Syst. 26(5), 1491–1509 (2006)CrossRefzbMATHGoogle Scholar
  19. FLM83.
    Freire A., Lopes A., Mañé R.: An invariant measure for rational maps. Bol. Soc. Brasil. Mat. 14(1), 45–62 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  20. Gou04.
    Gouezël, S.: Vitesse de décorrélation et théorèmes limites pour les applications non uniformément dilatantes. PhD thesis, 2004Google Scholar
  21. Gou05.
    Gouëzel S.: Berry-Esseen theorem and local limit theorem for non uniformly expanding maps. Ann. Inst. H. Poincaré Probab. Statist. 41(6), 997–1024 (2005)CrossRefADSzbMATHGoogle Scholar
  22. GPR08.
    Gelfert K., Przytycki F., Rams M.: Lyapunov spectrum for rational maps. Math. Ann. 348, 965–1004 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  23. GS09.
    Graczyk J., Smirnov S.: Non-uniform hyperbolicity in complex dynamics. Invent. Math. 175(2), 335–415 (2009)CrossRefMathSciNetADSzbMATHGoogle Scholar
  24. GW07.
    Gelfert K., Wolf C.: Topological pressure for one-dimensional holomorphic dynamical systems. Bull. Pol. Acad. Sci. Math. 55(1), 53–62 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  25. IT09.
    Iommi G., Todd M.: Natural equilibrium states for multimodal maps. Commun. Math. Phys. 300, 65–94 (2009)CrossRefMathSciNetADSGoogle Scholar
  26. KL08.
    Kahn J., Lyubich M.: A priori bounds for some infinitely renormalizable quadratics. II. Decorations. Ann. Sci. Éc. Norm. Supér. (4) 41(1), 57–84 (2008)MathSciNetzbMATHGoogle Scholar
  27. KN92.
    Keller G., Nowicki T.: Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps. Commun. Math. Phys. (4) 149(1), 31–69 (1992)CrossRefMathSciNetADSzbMATHGoogle Scholar
  28. KvS09.
    Kozlovski O., van Strien S.: Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials. Proc. Lond. Math. Soc. (3) 99(2), 275–296 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  29. Led84.
    Ledrappier F.: Quelques propriétés ergodiques des applications rationnelles. C. R. Acad. Sci. Paris Sér. I Math. 299(1), 37–40 (1984)MathSciNetzbMATHGoogle Scholar
  30. Lju83.
    Ljubich M.Ju.: Entropy properties of rational endomorphisms of the Riemann sphere. Erg. Th. Dyn. Systs. 3(3), 351–385 (1983)MathSciNetGoogle Scholar
  31. LS09.
    Li H., Shen W.: On non-uniformly hyperbolicity assumptions in one-dimensional dynamics. Science in China: Math. 53(7), 1663–1677 (2010)CrossRefMathSciNetADSzbMATHGoogle Scholar
  32. Mak98.
    Makarov N.G.: Fine structure of harmonic measure. Algebra i Analiz 10(2), 1–62 (1998)zbMATHGoogle Scholar
  33. May02.
    Mayer V.: Comparing measures and invariant line fields. Erg. Th. Dyn. Syst. 22(2), 555–570 (2002)CrossRefzbMATHGoogle Scholar
  34. McM94.
    McMullen, C.T.: Complex dynamics and renormalization, Volume 135 of Annals of Mathematics Studies. Princeton, NJ: Princeton University Press, 1994Google Scholar
  35. McM00.
    McMullen C.T.: Hausdorff dimension and conformal dynamics. II. geometrically finite rational maps. Comment. Math. Helv. 75(4), 535–593 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  36. MN05.
    Melbourne I., Nicol M.: Almost sure invariance principle for nonuniformly hyperbolic systems. Commun. Math. Phys. 260(1), 131–146 (2005)CrossRefMathSciNetADSzbMATHGoogle Scholar
  37. MN08.
    Melbourne I., Nicol M.: Large deviations for nonuniformly hyperbolic systems. Trans. Amer. Math. Soc. 360(12), 6661–6676 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  38. MS96.
    Makarov N., Smirnov S.: Phase transition in subhyperbolic Julia sets. Erg. Th. Dyn. Syst. 16(1), 125–157 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  39. MS00.
    Makarov N., Smirnov S.: On “thermodynamics” of rational maps. I. Negative spectrum. Commun. Math. Phys. 211(3), 705–743 (2000)CrossRefMathSciNetADSzbMATHGoogle Scholar
  40. MS03.
    Makarov N., Smirnov S.: On thermodynamics of rational maps. II. Non-recurrent maps. J. London Math. Soc. (2) 67(2), 417–432 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  41. MU03.
    Mauldin, R.D., Urbański, M.: Graph directed Markov systems, Volume 148 of Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press, 2003Google Scholar
  42. Pes97.
    Pesin, Y.B.: Dimension theory in dynamical systems. Chicago Lectures in Mathematics. Chicago, IL: University of Chicago Press, 1997Google Scholar
  43. PR98.
    Przytycki F., Rohde S.: Porosity of Collet-Eckmann Julia sets. Fund. Math. 155(2), 189–199 (1998)MathSciNetzbMATHGoogle Scholar
  44. PRL07.
    Przytycki F., Rivera-Letelier J.: Statistical properties of topological Collet-Eckmann maps. Ann. Sci. École Norm. Sup. (4) 40(1), 135–178 (2007)MathSciNetzbMATHGoogle Scholar
  45. PRLS03.
    Przytycki F., Rivera-Letelier J., Smirnov S.: Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps. Invent. Math. 151(1), 29–63 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  46. PRLS04.
    Przytycki F., Rivera-Letelier J., Smirnov S.: Equality of pressures for rational functions. Erg. Th. Dyn. Syst. 24(3), 891–914 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  47. Prz90.
    Przytycki F.: On the Perron-Frobenius-Ruelle operator for rational maps on the Riemann sphere and for Hölder continuous functions. Bol. Soc. Brasil. Mat. (N.S.) 20(2), 95–125 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  48. Prz98.
    Przytycki F.: Iterations of holomorphic Collet-Eckmann maps: conformal and invariant measures. Appendix: on non-renormalizable quadratic polynomials. Trans. Amer. Math. Soc. 350(2), 717–742 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  49. Prz99.
    Przytycki F.: Conical limit set and Poincaré exponent for iterations of rational functions. Trans. Amer. Math. Soc. 351(5), 2081–2099 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  50. PS75.
    Plachky D., Steinebach J.: A theorem about probabilities of large deviations with an application to queuing theory. Period. Math. Hungar. 6(4), 343–345 (1975)CrossRefMathSciNetzbMATHGoogle Scholar
  51. PS08.
    Pesin Y., Senti S.: Equilibrium measures for maps with inducing schemes. J. Mod. Dyn. 2(3), 397–430 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  52. PU02.
    Przytycki, F., Urbański, M.: Conformal Fractals: Ergodic Theory Methods. London Mathematical Society, Lecture Notes Series, Vol. 371. Cambridge: Cambridge University Press, 2010Google Scholar
  53. QY09.
    Qiu W.Y., Yin Y.C.: Proof of the Branner-Hubbard conjecture on Cantor Julia sets. Sci. China Ser. A 52(1), 45–65 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  54. RL07.
    Rivera-Letelier J.: A connecting lemma for rational maps satisfying a no-growth condition. Erg. Th. Dyn. Syst. 27(2), 595–636 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  55. RLS10.
    Rivera-Letelier, J., Shen, W.: Statistical properties of one-dimensional maps under weak hyperbolicity assumptions. 2010. http://arXiv.org/abs/1004.0230v1 [math.DS], 2010
  56. Rue92.
    Ruelle D.: Spectral properties of a class of operators associated with conformal maps in two dimensions. Commun. Math. Phys. 144(3), 537–556 (1992)CrossRefMathSciNetADSzbMATHGoogle Scholar
  57. Rue04.
    Ruelle, D.: Thermodynamic formalism. Cambridge Mathematical Library. Cambridge: Cambridge University Press, second edition, 2004Google Scholar
  58. SU03.
    Stratmann B.O., Urbanski M.: Real analyticity of topological pressure for parabolically semihyperbolic generalized polynomial-like maps. Indag. Math. (N.S.) 14(1), 119–134 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  59. TK05.
    Tyran-Kamińska M.: An invariance principle for maps with polynomial decay of correlations. Commun. Math. Phys. 260(1), 1–15 (2005)CrossRefADSzbMATHGoogle Scholar
  60. Urb03.
    Urbański M.: Thermodynamic formalism, topological pressure, and escape rates for critically non-recurrent conformal dynamics. Fund. Math. 176(2), 97–125 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  61. You99.
    Young L.-S.: Recurrence times and rates of mixing. Israel J. Math. 110, 153–188 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  62. Zdu90.
    Zdunik A.: Parabolic orbifolds and the dimension of the maximal measure for rational maps. Invent. Math. 99(3), 627–649 (1990)CrossRefMathSciNetADSzbMATHGoogle Scholar
  63. Zdu90.
    Zinsmeister, M.: Formalisme thermodynamique et systèmes dynamiques holomorphes, Volume 4 of Panoramas et Synthèses [Panoramas and Syntheses]. Paris: Société Mathématique de France, 1996Google Scholar
  64. Zwe05.
    Zweimüller R.: Invariant measures for general(ized) induced transformations. Proc. Amer. Math. Soc. 133(8), 2283–2295 (2005)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Institute of MathematicsPolish Academy of SciencesWarszawaPoland
  2. 2.Facultad de Matemáticas, Campus San JoaquínPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations