Advertisement

Communications in Mathematical Physics

, Volume 301, Issue 3, pp 771–809 | Cite as

Spectral Measures and Generating Series for Nimrep Graphs in Subfactor Theory II: SU(3)

  • David E. Evans
  • Mathew PughEmail author
Article

Abstract

We complete the computation of spectral measures for SU(3) nimrep graphs arising in subfactor theory, namely the \({SU(3) \mathcal{ADE}}\) graphs associated with SU(3) modular invariants and the McKay graphs of finite subgroups of SU(3). For the SU(2) graphs the spectral measures distill onto very special subsets of the semicircle/circle, whilst for the SU(3) graphs the spectral measures distill onto very special subsets of the discoid/torus. The theory of nimreps allows us to compute these measures precisely. We have previously determined spectral measures for some nimrep graphs arising in subfactor theory, particularly those associated with all SU(2) modular invariants, all subgroups of SU(2), the torus \({\mathbb{T}^2,\,SU(3)}\), and some SU(3) graphs.

Keywords

Conjugacy Class Spectral Measure Fundamental Domain Fusion Rule Dirac Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banica T., Bisch D.: Spectral measures of small index principal graphs. Commun. Math. Phys. 269, 259–281 (2007)zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Behrend R.E., Pearce P.A., Petkova V.B., Zuber J.-B.: Boundary conditions in rational conformal field theories. Nucl. Phys. B 579, 707–773 (2000)zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Birkhoff G., Mac Lane S.: A survey of modern algebra. Third edition. The Macmillan Co., New York (1965)Google Scholar
  4. 4.
    Böckenhauer J., Evans D.E.: Modular invariants, graphs and α-induction for nets of subfactors. II. Commun. Math. Phys. 200, 57–103 (1999)zbMATHCrossRefADSGoogle Scholar
  5. 5.
    Böckenhauer J., Evans D.E.: Modular invariants, graphs and α-induction for nets of subfactors. III. Commun. Math. Phys. 205, 183–228 (1999)zbMATHCrossRefADSGoogle Scholar
  6. 6.
    Böckenhauer J., Evans D.E.: Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors. Commun. Math. Phys. 213, 267–289 (2000)zbMATHCrossRefADSGoogle Scholar
  7. 7.
    Böckenhauer, J., Evans, D.E.: Modular invariants and subfactors. In: Mathematical physics in mathematics and physics (Siena, 2000), Fields Inst. Commun. 30, Providence, RI: Amer. Math. Soc., 2001, pp. 11–37Google Scholar
  8. 8.
    Böckenhauer, J., Evans, D.E.: Modular invariants from subfactors. In: Quantum symmetries in theoretical physics and mathematics (Bariloche, 2000), Contemp. Math. 294, Providence, RI: Amer. Math. Soc., 2002, pp. 95–131Google Scholar
  9. 9.
    Böckenhauer J., Evans D.E., Kawahigashi Y.: On α-induction, chiral generators and modular invariants for subfactors. Commun. Math. Phys. 208, 429–487 (1999)zbMATHCrossRefADSGoogle Scholar
  10. 10.
    Böckenhauer J., Evans D.E., Kawahigashi Y.: Chiral structure of modular invariants for subfactors. Commun. Math. Phys. 210, 733–784 (2000)zbMATHCrossRefADSGoogle Scholar
  11. 11.
    Bovier A., Lüling M., Wyler D.: Finite subgroups of SU(3). J. Math. Phys. 22, 1543–1547 (1981)zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Cappelli A., Itzykson C., Zuber J.-B.: The A-D-E classification of minimal and \({A\sp {(1)}\sb 1}\) conformal invariant theories. Commun. Math. Phys. 113, 1–26 (1987)zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Desmier P.E., Sharp R.T., Patera J.: Analytic SU(3) states in a finite subgroup basis. J. Math. Phys. 23, 1393–1398 (1982)zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Di Francesco P., Zuber J.-B.: SU(N) lattice integrable models associated with graphs. Nuclear Phys. B 338, 602–646 (1990)CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Escobar J.A., Luhn C.: The flavor group Δ(6n 2). J. Math. Phys. 50, 013524 (2009)CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Evans D.E.: Fusion rules of modular invariants. Rev. Math. Phys. 14, 709–731 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Evans, D.E.: Critical phenomena, modular invariants and operator algebras. In: Operator algebras and mathematical physics (Constanţa, 2001), Bucharest: Theta, 2003, pp. 89–113Google Scholar
  18. 18.
    Evans, D.E., Kawahigashi, Y.: Quantum symmetries on operator algebras. Oxford Mathematical Monographs. New York: The Clarendon Press Oxford University Press, 1998Google Scholar
  19. 19.
    Evans D.E., Pugh M.: Ocneanu Cells and Boltzmann Weights for the \({SU(3) \mathcal{ADE}}\) Graphs. Münster J. Math. 2, 95–142 (2009)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Evans D.E., Pugh M.: SU(3)-Goodman-de la Harpe-Jones subfactors and the realisation of SU(3) modular invariants. Rev. Math. Phys. 21, 877–928 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Evans D.E., Pugh M.: A 2-Planar Algebras I. Quantum Topol. 1, 321–377 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Evans D.E., Pugh M.: Spectral Measures for Nimrep Graphs in Subfactor Theory. Commun. Math. Phys. 295, 363–413 (2010)zbMATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Evans, D.E., Pugh, M.: The Nakayama permutation of the nimreps associated to SU(3) modular invariants. Preprint: arXiv:1008.1003 (math.OA), 2010Google Scholar
  24. 24.
    Fairbairn W.M., Fulton T., Klink W.H.: Finite and disconnected subgroups of SU 3 and their application to the elementary-particle spectrum. J. Math. Phys. 5, 1038–1051 (1964)zbMATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Gannon T.: The classification of affine SU(3) modular invariant partition functions. Commun. Math. Phys. 161, 233–263 (1994)zbMATHCrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Gepner D.: Fusion rings and geometry. Commun. Math. Phys. 141, 381–411 (1991)zbMATHCrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Hanany, A., He, Y.-H.: Non-abelian finite gauge theories. J. High Energy Phys. 9902, 013 (1999), Paper 13, 31 pp. (electronic)Google Scholar
  28. 28.
    Kawai T.: On the structure of fusion algebras. Phys. Lett. B 217, 47–251 (1989)Google Scholar
  29. 29.
    Kuperberg G.: The quantum G 2 link invariant. Internat. J. Math. 5, 61–85 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Kuperberg G.: Spiders for rank 2 Lie algebras. Commun. Math. Phys. 180, 109–151 (1996)zbMATHCrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Luhn, C., Nasri, S., Ramond, P.: Flavor group Δ(3n 2). J. Math. Phys. 48, 073501, (2007), 21pp.Google Scholar
  32. 32.
    Miller G.A., Blichfeldt H.F., Dickson L.E.: Theory and applications of finite groups. Dover Publications Inc., New York (1961)zbMATHGoogle Scholar
  33. 33.
    Ocneanu, A.: Higher Coxeter Systems. Talk given at MSRI, 2000. http://www.msri.org/publications/ln/msri/2000/subfactors/ocneanu
  34. 34.
    Ocneanu, A.:The classification of subgroups of quantum SU(N). In: Quantum symmetries in theoretical physics and mathematics (Bariloche, 2000), Contemp. Math. 294, Providence, RI: Amer. Math. Soc., 2002, pp. 133–159Google Scholar
  35. 35.
    Wassermann A.: Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators. Invent. Math. 133, 467–538 (1998)zbMATHCrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Xu F.: New braided endomorphisms from conformal inclusions. Commun. Math. Phys. 192, 349–403 (1998)zbMATHCrossRefADSGoogle Scholar
  37. 37.
    Yau, S.-T., Yu, Y.: Gorenstein quotient singularities in dimension three. Mem. Amer. Math. Soc. 105 viii+88 (1993)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.School of MathematicsCardiff UniversityCardiffUnited Kingdom

Personalised recommendations