Advertisement

Communications in Mathematical Physics

, Volume 301, Issue 3, pp 709–722 | Cite as

A -Algebra of an Elliptic Curve and Eisenstein Series

  • Alexander PolishchukEmail author
Article

Abstract

We compute explicitly the A -structure on the algebra \({{\rm Ext}^*(\mathcal{O}_C \oplus L, \mathcal{O}_C \oplus L)}\) , where L is a line bundle of degree 1 on an elliptic curve C. The answer involves higher derivatives of Eisenstein series.

Keywords

Line Bundle Elliptic Curve Fourier Expansion Eisenstein Series Coherent Sheave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bondal, A., Orlov, D.: Derived categories of coherent sheaves. In: Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Beijing: Higher Ed. Press, 2002, pp. 47–56Google Scholar
  2. 2.
    Katz N.: p-adic interpolation of real analytic Eisenstein series. Ann. Math. 104, 459–571 (1976)CrossRefzbMATHGoogle Scholar
  3. 3.
    Keller B.: Introduction to A-infinity algebras and modules. Homology Homotopy Appl. 3(1), 1–35 (2001)zbMATHMathSciNetADSGoogle Scholar
  4. 4.
    Keller, B.: A-infinity algebras, modules and functor categories. In: Trends in representation theory of algebras and related topics, Providence, RI: Amer. Math. Soc., 2006, pp. 67–93Google Scholar
  5. 5.
    Kontsevich, M., Soibelman Y.: Homological mirror symmetry and torus fibration. In: Symplectic geometry and mirror symmetry (Seoul, 2000), River Edge, NJ: World Sci. Publishing, 2001, pp. 203–263Google Scholar
  6. 6.
    Lefèvre-Hasegawa, K.: Sur les A -catégories. Thèse de doctorat, Université Denis Diderot – Paris 7, 2003, available at http://www.math.jussieu.fr/~keller/lefevre/publ.html, 2005
  7. 7.
    Merkulov S.: Strong homotopy algebras of a Kähler manifold. Internat. Math. Res. Notices 3, 153–164 (1999)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Polishchuk, A.: Homological mirror symmetry with higher products. In: Proceedings of the Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds, Providence, RI: AMS and International Press, 2001, pp. 247–259Google Scholar
  9. 9.
    Polishchuk A.: Rapidly converging series for the Weierstrass zeta-function and for the Kronecker function. Math. Research Letters 7, 493–502 (2000)MathSciNetGoogle Scholar
  10. 10.
    Weil A.: Elliptic functions according to Eisenstein and Kronecker. Springer-Verlag, Berlin-Heidelberg-New York (1976)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of OregonEugeneUSA

Personalised recommendations