Skip to main content
Log in

Transverse Laplacians for Substitution Tilings

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Pearson and Bellissard recently built a spectral triple – the data of Riemannian noncommutative geometry – for ultrametric Cantor sets. They derived a family of Laplace–Beltrami like operators on those sets. Motivated by the applications to specific examples, we revisit their work for the transversals of tiling spaces, which are particular self-similar Cantor sets. We use Bratteli diagrams to encode the self-similarity, and Cuntz–Krieger algebras to implement it. We show that the abscissa of convergence of the ζ-function of the spectral triple gives indications on the exponent of complexity of the tiling. We determine completely the spectrum of the Laplace–Beltrami operators, give an explicit method of calculation for their eigenvalues, compute their Weyl asymptotics, and a Seeley equivalent for their heat kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Karwowski, W.: Jump processes on leaves of multibranching trees. J. Math. Phys. 49(9), 093503, 20, (2008)

    Google Scholar 

  2. Anderson J.E., Putnam I.F.: Topological invariants for substitution tilings and their associated C*-algebras. Erg. Th. Dynam. Syst. 18(3), 509–537 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellissard, J.: Schrödinger operators with almost periodic potential: an overview. In: Mathematical problems in theoretical physics (Berlin, 1981), Volume 153 of Lecture Notes in Phys., Berlin: Springer, 1982, pp. 356–363

  4. Bellissard J., Benedetti R., Gambaudo J.-M.: Spaces of tilings, finite telescopic approximations and gap-labeling. Commun. Math. Phys. 261(1), 1–41 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Bellissard J., Bovier A., Ghez J.-M.: Gap labelling theorems for one-dimensional discrete Schrödinger operators. Rev. Math. Phys. 4(1), 1–37 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bellissard J., Kellendonk J., Legrand A.: Gap-labelling for three-dimensional aperiodic solids. C. R. Acad. Sci. Paris Sér. I Math. 332(6), 521–525 (2001)

    MATH  MathSciNet  ADS  Google Scholar 

  7. Bellissard J., van Elst A., Schulz-Baldes H.: The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35(10), 5373–5451 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Benameur, M.-T., Oyono-Oyono, H.: Gap-labelling for quasi-crystals (proving a conjecture by J. Bellissard). In: Operator algebras and mathematical physics (Constanţa, 2001). Bucharest: Theta, 2003, pp. 11–22

  9. Benameur M.-T., Oyono-Oyono H.: Index theory for quasi-crystals. I. Computation of the gap-label group. J. Funct. Anal. 252(1), 137–170 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bratteli O.: Inductive limits of finite dimensional C*-algebras. Trans. Amer. Math. Soc. 171, 195–234 (1972)

    MATH  MathSciNet  Google Scholar 

  11. Christensen E., Ivan C.: Spectral triples for AF C*-algebras and metrics on the cantor set. J. Operator Theory 56(1), 17–46 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Connes A.: Géométrie non commutative. InterEditions, Paris (1990)

    MATH  Google Scholar 

  13. Connes A.: Noncommutative geometry. Academic Press Inc., San Diego, CA (1994)

    MATH  Google Scholar 

  14. Cuntz J., Krieger W.: A class of C*-algebras and topological Markov chains. Invent. Math. 56(3), 251–268 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Durand F., Host B., Skau C.: Substitutional dynamical systems, Bratteli diagrams and dimension groups. Erg. The. Dyn. Syst. 19(4), 953–993 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Evans S.N.: Local properties of Lévy processes on a totally disconnected group. J. Theoret. Probab. 2(2), 209–259 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Falconer K.: Fractal geometry. John Wiley & Sons Ltd., Chichester (1990)

    MATH  Google Scholar 

  18. Forrest A.H.: K-groups associated with substitution minimal systems. Israel J. Math. 98, 101–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Frank N.P.: A primer of substitution tilings of the Euclidean plane. Expo. Math. 26(4), 295–326 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fukushima, M.: Dirichlet forms and Markov processes. Volume 23 of North-Holland Mathematical Library. Amsterdam: North-Holland Publishing Co., 1980

  21. Giordano T., Matui H., Putnam I.F., Skau C.F.: Orbit equivalence for Cantor minimal \({\mathbb{Z}^2}\) -systems. J. Amer. Math. Soc. 21(3), 863–892 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Giordano T., Matui H., Putnam I.F., Skau C.F.: Orbit equivalence for Cantor minimal \({\mathbb{Z}^d}\) -systems. Invent. Math. 179(1), 119–158 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Giordano T., Putnam I.F., Skau C.F.: Topological orbit equivalence and C*-crossed products. J. Reine Angew. Math. 469, 51–111 (1995)

    MATH  MathSciNet  Google Scholar 

  24. Grünbaum, B., Shephard, G.C.: Tilings and patterns. A Series of Books in the Mathematical Sciences. New York: W. H. Freeman and Company, 1989

  25. Herman R.H., Putnam I.F., Skau C.F.: Ordered Bratteli diagrams, dimension groups and topological dynamics. Internat. J. Math. 3(6), 827–864 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Horn R.A., Johnson C.R.: Topics in matrix analysis. Cambridge University Press, Cambridge (1994) corrected reprint of the 1991 original

    MATH  Google Scholar 

  27. Julien, A., Savinien, J.: Embedding of self-similar ultrametric Cantor sets. Preprint available at http://arxiv.org/abs/1008.0264v1 [math.GN], 2010

  28. Kaminker J., Putnam I.: A proof of the gap labeling conjecture. Michigan Math. J. 51(3), 537–546 (2003)

    MATH  MathSciNet  Google Scholar 

  29. Kellendonk J.: Noncommutative geometry of tilings and gap labelling. Rev. Math. Phys. 7(7), 1133–1180 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kellendonk J.: The local structure of tilings and their integer group of coinvariants. Commun. Math. Phys. 187(1), 115–157 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Kellendonk J.: Gap labelling and the pressure on the boundary. Commun. Math. Phys. 258(3), 751–768 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Kellendonk J., Richter T., Schulz-Baldes H.: Edge current channels and Chern numbers in the integer quantum Hall effect. Rev. Math. Phys. 14(1), 87–119 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kellendonk J., Schulz-Baldes H.: Boundary maps for C*-crossed products with \({\mathbb{R}}\) with an application to the quantum Hall effect. Commun. Math. Phys. 249(3), 611–637 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Kellendonk J., Schulz-Baldes H.: Quantization of edge currents for continuous magnetic operators. J. Funct. Anal. 209(2), 388–413 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kenyon R.: The construction of self-similar tilings. Geom. Funct. Anal. 6(3), 471–488 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lagarias J.C., Pleasants P.A.B.: Repetitive Delone sets and quasicrystals. Erg. Th. Dyn. Syst. 23(3), 831–867 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Marchal P.: Stable processes on the boundary of a regular tree. Ann. Probab. 29(4), 1591–1611 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  38. Michon G.: Les cantors réguliers. C. R. Acad. Sci. Paris Sér. I Math. 300(19), 673–675 (1985)

    MATH  MathSciNet  Google Scholar 

  39. Pearson J.C., Bellissard J.V.: Noncommutative riemannian geometry and diffusion on ultrametric cantor sets. J. Noncommut. Geom. 3(3), 447–481 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Queffélec, M.: Substitution dynamical systems—spectral analysis. Volume 1294 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1987

  41. Robinson, E.A., Jr.: Symbolic dynamics and tilings of \({\mathbb{R}^d}\) . In: Symbolic dynamics and its applications. Volume 60 of Proc. Sympos. Appl. Math. Providence, RI: Amer. Math. Soc., 2004, pp. 81–119

  42. Solomyak B.: Dynamics of self-similar tilings. Erg. Th. Dyn. Syst. 17(3), 695–738 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  43. Solomyak B.: Nonperiodicity implies unique composition for self-similar translationally finite tilings. Discrete Comput. Geom. 20(2), 265–279 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  44. Van Elst A.: Gap-labelling theorems for Schrödinger operators on the square and cubic lattice. Rev. Math. Phys. 6(2), 319–342 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  45. Vershik, A.M., Livshits, A.N.: Adic models of ergodic transformations, spectral theory, substitutions, and related topics. In: Representation theory and dynamical systems, Volume 9 of Adv. Soviet Math. Providence, RI: Amer. Math. Soc., 1992, pp. 185–204

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Savinien.

Additional information

Communicated by A. Connes

Work supported by the NSF grants no. DMS-0300398 and no. DMS-0600956.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Julien, A., Savinien, J. Transverse Laplacians for Substitution Tilings. Commun. Math. Phys. 301, 285–318 (2011). https://doi.org/10.1007/s00220-010-1150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1150-4

Keywords

Navigation