Skip to main content
Log in

Harmonic Functions and Instanton Moduli Spaces on the Multi-Taub–NUT Space

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Explicit construction of the basic SU(2) anti-instantons over the multi-Taub–NUT geometry via the classical conformal rescaling method is exhibited. These anti-instantons satisfy the so-called weak holonomy condition at infinity with respect to the trivial flat connection and decay rapidly. The resulting unit energy anti-instantons have trivial holonomy at infinity.

We also fully describe their unframed moduli space and find that it is a five dimensional space admitting a singular disk-fibration over \({\mathbb{R}^3}\) .

On the way, we work out in detail the twistor space of the multi-Taub–NUT geometry together with its real structure and transform our anti-instantons into holomorphic vector bundles over the twistor space. In this picture we are able to demonstrate that our construction is complete in the sense that we have constructed a full connected component of the moduli space of solutions of the above type.

We also prove that anti-instantons with arbitrary high integer energy exist on the multi-Taub–NUT space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson M.T., Kronheimer P.B., LeBrun C.: Complete Ricci-flat manifolds with infinite topological type. Commun. Math. Phys. 125, 637–642 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Atiyah, M.F.: Green’s functions for self-dual four-manifolds. In: Mathematical analysis and applications, Part A, Advances in mathematics supplementary studies 7A, New York: Academic Press, pp. 129–158, 1981

  3. Atiyah M.F., Hitchin N.J.: The geometry and dynamics of magnetic monopoles. Princeton University Press, Princeton, NJ (1988)

    MATH  Google Scholar 

  4. Atiyah M.F., Hitchin N.J., Singer I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. London A362, 425–461 (1978)

    MathSciNet  ADS  Google Scholar 

  5. Atiyah M.F., Ward R.: Instantons and algebraic geometry. Commun. Math. Phys. 55, 117–124 (1977)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Besse A.L.: Einstein Manifolds. Springer-Verlag, Berlin (1987)

    MATH  Google Scholar 

  7. Biquard O., Jardim M.: Asymptotic behaviour and moduli space of double periodic instantons. J. Eur. Math. Soc. 3, 335–375 (2001)

    MATH  MathSciNet  Google Scholar 

  8. Cherkis S.: Moduli spaces of instantons on the Taub–NUT space. Commun. Math. Phys. 290, 719–736 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Cherkis S., Hitchin N.J.: Gravitational instantons of type D k . Commun. Math. Phys. 260, 299–317 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Etesi G.: Classification of ’t Hooft instantons over multi-centered gravitational instantons. Nucl. Phys. B662, 511–530 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  11. Etesi G.: The topology of asymptotically locally flat gravitational instantons. Phys. Lett. B641, 461–465 (2006)

    MathSciNet  ADS  Google Scholar 

  12. Etesi G., Hausel T.: On Yang–Mills-instantons over multi-centered gravitational instantons. Comm. Math. Phys. 235, 275–288 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Etesi, G., Jardim, M.: Moduli spaces of self-dual connections over asymptotically locally flat gravitational instantons. Commun. Math. Phys. 280, 285–313 (2008), Erratum: ibid. 288, 799–800 (2009)

    Google Scholar 

  14. Freedman M.H.: The topology of four-manifolds. J. Diff. Geom. 17, 357–454 (1982)

    MATH  Google Scholar 

  15. Gibbons G.W., Hawking S.W.: Gravitational multi-instantons. Phys. Lett. B78, 430–432 (1978)

    ADS  Google Scholar 

  16. Griffiths Ph., Harris J.: Principles of Algebraic Geometry. John Wiley & Sons, Inc., New York (1984)

    Google Scholar 

  17. Grigor’yan, A.A.: The existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds (Russian). Math. Sb. (S.N.) 128, 354–363, 446(170) (1985)

  18. Hartshorne R.: Stable vector bundles and instantons. Commun. Math. Phys. 59, 1–15 (1978)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Hausel T., Hunsicker E., Mazzeo R.: Hodge cohomology of gravitational instantons. Duke Math. J. 122, 485–548 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hawking S.W.: Gravitational instantons. Phys. Lett. A60, 81–83 (1977)

    MathSciNet  ADS  Google Scholar 

  21. Hebey, E.: Nonlinear analysis on manifolds: Sobolev spaces and inequalities. Courant Lecture Notes 5, Providence, RI: Amer. Math. Soc., 2000

  22. Hitchin N.J.: Polygons and gravitons. Math. Proc. Camb. Phil. Soc. 85, 465–476 (1979)

    Article  MathSciNet  Google Scholar 

  23. Hitchin N.J.: Linear field equations on self-dual spaces. Proc. Roy. Soc. London A370, 173–191 (1980)

    MathSciNet  ADS  Google Scholar 

  24. Hitchin, N.J.: Twistor construction of Einstein metrics. In: Global Riemannian geometry (Durham, 1983), Ellis Horwood Ser.: Math. Appl., Chichester: Horwood, 1984, pp. 115–125

  25. Jackiw R., Nohl C., Rebbi C.: Conformal properties of pseudo-particle configurations. Phys. Rev. D15, 1642–1646 (1977)

    ADS  Google Scholar 

  26. Kronheimer P.B.: The construction of ALE spaces as hyper-Kähler quotients. J. Diff. Geom. 29, 665–683 (1989)

    MATH  MathSciNet  Google Scholar 

  27. Kronheimer P.B., Nakajima H.: Yang–Mills instantons on ALE gravitational instantons. Math. Ann. 288(2), 263–607 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. LeBrun C.: Complete Ricci-flat Kähler metrics on \({\mathbb{C}^n}\) need not be flat. Proc. Symp. Pure Math. 52(2), 297–304 (1991)

    MathSciNet  Google Scholar 

  29. Minerbe, V.: On some asymptotically flat manifolds with non-maximal volume growth. http://arXiv.org/abs/0709.1084v1[math.DG], 2007

  30. Minerbe V.: A mass for ALF manifolds. Commun. Math. Phys. 289, 925–955 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Page D.N.: Green’s function for gravitational multi-instantons. Phys. Lett. B85, 369–372 (1979)

    MathSciNet  ADS  Google Scholar 

  32. Penrose R.: Nonlinear gravitons and curved twistor theory. Gen. Rel. Grav. 7, 31–52 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Uhlenbeck K.K.: Removable singularities in Yang–Mills fields. Commun. Math. Phys. 83, 11–29 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Varopoulos, N.: Potential theory and diffusion on Riemannian manifolds. In: Conference on harmonic analysis in honor of Antoni Zygmund (Chicago, Ill. 1981), Vol. I, II, Wadsworth Math. Ser., Belmont, CA: Wadsworth, 1983, pp. 821–837

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Etesi.

Additional information

Communicated by N.A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etesi, G., Szabó, S. Harmonic Functions and Instanton Moduli Spaces on the Multi-Taub–NUT Space. Commun. Math. Phys. 301, 175–214 (2011). https://doi.org/10.1007/s00220-010-1146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1146-0

Keywords

Navigation