Skip to main content
Log in

A Quantum Analogue of the First Fundamental Theorem of Classical Invariant Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish a noncommutative analogue of the first fundamental theorem of classical invariant theory. For each quantum group associated with a classical Lie algebra, we construct a noncommutative associative algebra whose underlying vector space forms a module for the quantum group and whose algebraic structure is preserved by the quantum group action. The subspace of invariants is shown to form a subalgebra, which is finitely generated. We determine generators of this subalgebra of invariants and determine their commutation relations. In each case considered, the noncommutative modules we construct are flat deformations of their classical commutative analogues. Our results are therefore noncommutative generalisations of the first fundamental theorem of classical invariant theory, which follows from our results by taking the limit as q → 1. Our method similarly leads to a definition of quantum spheres, which is a noncommutative generalisation of the classical case with orthogonal quantum group symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen H.H., Polo P., Wen K.X.: Representations of quantum algebras. Invent. Math. 104(1), 1–59 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Atiyah M., Bott R., Patodi V.K.: On the heat equation and the index theorem. Invent. Math. 19, 279–330 (1973)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Berenstein A., Zwicknagl S.: Braided symmetric and exterior algebras. Trans. Amer. Math. Soc. 360(7), 3429–3472 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brown, K.A., Goodearl K.R.: Lectures on algebraic quantum groups. Advanced Courses in Mathematics. CRM Barcelona, Basel: Birkhäuser Verlag, 2002

  5. Brundan J.: Dual canonical bases and Kazhdan-Lusztig polynomials. J. Algebra 306(1), 17–46 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Connes A.: “Noncommutative geometry”. Academic Press, London-NewTork (1994)

    Google Scholar 

  7. de Concini C., Procesi C.: A characteristic free approach to invariant theory. Adv. Math. 21, 330–354 (1976)

    Article  MATH  Google Scholar 

  8. Drinfeld, V.G.: Quantum groups. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), 798–820, Providence, RI: Amer. Math. Soc., 1987, pp. 798–820

  9. Du J., Scott L., Parshall B.: Quantum Weyl reciprocity and tilting modules. Commun. Math. Phys. 195(2), 321–352 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Goodearl K.R., Lenagan T.H., Rigal L.: The first fundamental theorem of coinvariant theory for the quantum general linear group. Publ. Res. Inst. Math. Sci. 36(2), 269–296 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goodearl, K.R., Lenagan, T.H.: Quantized coinvariants at transcendental q. In: Hopf algebras in noncommutative geometry and physics, Lecture Notes in Pure and Appl. Math., 239, New York: Dekker, 2005, pp. 155–165

  12. Gover A.R., Zhang R.B.: Geometry of quantum homogeneous vector bundles and representation theory of quantum groups. I. Rev. Math. Phys. 11, 533–552 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gurevich, D.I., Pyatov, P.N., Saponov, P.A.: Quantum matrix algebras of GL(m|n)-type: the structure of the characteristic subalgebra and its spectral parametrization. (Russian) Teoret. Mat. Fiz. 147(1), 14–46 (2006); translation in Theoret. Math. Phys. 147(1), 460–485 (2006)

    Google Scholar 

  14. Howe R.: Transcending classical invariant theory. J Amer. Math. Soc. 2, 535–552 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jantzen, J.C.: Lectures on quantum groups. Graduate Studies in Mathematics, 6, Providence, RI: Amer. Math. Soc., 1996

  16. Jimbo M.: A q-analogue of \({U({\mathfrak{gl}}(N+1))}\) , Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys. 11(3), 247–252 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Leduc R., Ram A.: A ribbon Hopf algebra approach to the irreducible representations of centralizer algebras: the Brauer, Birman-Wenzl, and type A Iwahori-Hecke algebras. Adv. Math. 125, 1–94 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lehrer G.I., Zhang R.B.: Strongly multiplicity free modules for Lie algebras and quantum groups. J. Alg. 306(1), 138–174 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lehrer, G.I., Zhang, R.B.: A Temperley-Lieb analogue for the BMW-algebra, Progress in Mathematics, Basel-Boston: Birkhäuser, in press

  20. Loday, J.-L.: Cyclic homology, Appendix E by Mara O. Ronco. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 301, Berlin: Springer-Verlag, 1992

  21. Manin, Yu.: Quantum groups and noncommutative geometry. Université de Montréal, Centre de Recherches Mathématiques, Montreal, QC, 1988

  22. Montgomery, S.: Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, Vol. 82, Providence, RI: Amer. Math. Soc., 1993

  23. Müller E.F., Schneider H.-J.: Quantum homogeneous spaces with faithfully flat module structures. Israel J. Math. 111, 157–190 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Podleś P.: Differential calculus on quantum spheres. Lett. Math. Phys. 18(2), 107–119 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Procesi C.: The invariant theory of n × n matrices. Adv. Math. 19, 306–381 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ram A., Wenzl H.: Matrix units for centralizer algebras. J. Alg. 145, 378–395 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Reshetikhin N.Yu., Turaev V.G.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys. 127(1), 1–26 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Reshetikhin N., Turaev V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103(3), 547–597 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Rossi-Doria O.: A U q (sl(2))-representation with no quantum symmetric algebra. Rend. Mat. Acc. Lincei s., 9 10, 5–9 (1999)

    MATH  MathSciNet  Google Scholar 

  30. Strickland E.: Classical invariant theory for the quantum symplectic group. Adv. Math. 123(1), 78–90 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wenzl H.: On tensor categories of Lie type E N , N ≠ 9. Adv. Math. 177(1), 66–104 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Weyl, H.: The classical groups. Their invariants and representations. Fifteenth printing. Princeton Landmarks in Mathematics. Princeton Paperbacks. Princeton, NJ: Princeton University Press, 1997

  33. Woronowicz S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111(4), 613–665 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Zhang R.B., Gould M.D., Bracken A.J.: From representations of the braid group to solutions of the Yang-Baxter equation. Nucl. Physics B 354(2-3), 625–652 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  35. Zhang R.B.: Structure and representations of the quantum general linear supergroup. Commun. Math. Phys. 195, 525–547 (1998)

    Article  MATH  ADS  Google Scholar 

  36. Zhang R.B.: Howe duality and the quantum general linear group. Proc. Amer. Math. Soc. 131(9), 2681–2692 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zwicknagl S.: R-matrix Poisson algebras and their deformations. Adv. Math. 220(1), 1–58 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Lehrer.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehrer, G.I., Zhang, H. & Zhang, R.B. A Quantum Analogue of the First Fundamental Theorem of Classical Invariant Theory. Commun. Math. Phys. 301, 131–174 (2011). https://doi.org/10.1007/s00220-010-1143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1143-3

Keywords

Navigation