Skip to main content
Log in

Optimal Convergence Rates of Classical Solutions for Vlasov-Poisson-Boltzmann System

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The dynamics of charged dilute particles can be modeled by the two species Vlasov-Poisson-Boltzmann system when the particles interact through collisions in the self-induced electric field. By constructing the compensating function for multi-species particle system, the optimal time decay of global classical solutions to this system near a global Maxwellian is obtained through a refined energy method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences 106, New York: Springer-Verlag 1994

  2. Chapman S., Cowling T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge Univ. Press, Cambridge (1952)

    Google Scholar 

  3. Duan, R.-J., Strain, R.M.: Optimal Time decay of the Vlasov-Poisson-Boltzmann system in R 3. Arch. Rat. Mech. Anal., doi:10.1007/s00205-010-0318-6, 2010

  4. Duan R.-J., Ukai S., Yang T., Zhao H.-J.: Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications. Commun. Math. Phys. 277, 189–236 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Deckelnick K.: Decay estimates for the compressible Navier-Stokes equations in unbounded domains. Math. Z. 209(1), 115–130 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Desvillettes L., Dolbeault J.: On long time asymptotics of the Vlasov-Poisson-Boltzmann equation. Comm. P.D.E. 16(2–3), 451–489 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Glassey R.T.: The Cauchy Problem in Kinetic Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1996)

    Book  MATH  Google Scholar 

  8. Glassey R.T., Strauss W.A.: Decay of the linearized Boltzmann-Vlasov system. Transport Theory Stat. Phys. 28(2), 135–156 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Glassey R.T., Strauss W.A.: Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Disc. Contin. Dynam. Syst. 5(3), 457–472 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Guo Y.: The Vlasov-Poisson-Boltzmann system near Maxwellians. Comm. Pure Appl. Math. 55(9), 1104–1135 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Guo Y.: The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent. Math. 153(3), 593–630 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Guo Y.: The Boltzmann equation in the whole space. Indiana Univ. Math. J. 53(4), 1081–1094 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guo Y.: Boltzmann diffusive limit beyond the Navier-Stokes approximation. Comm. Pure Appl. Math. 59(5), 626–687 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kawashima S.: The Boltzmann equation and thirteen moments. Japan J. Appl. Math. 7, 301–320 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lions, P.L.: On kinetic equations. In: Proceedings of the International Congress of Mathematicians, Kyoto: Math. Soc. Japan, 1991, pp. 1173–1185

  16. Liu T.-P., Yang T., Yu S.-H.: Energy method for the Boltzmann equation. Physica D 188(3–4), 178–192 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Liu T.-P., Yu S.-H.: Boltzmann equation: micro-macro decompositions and positivity of shock profiles. Commun. Math. Phys. 246(1), 133–179 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Mischler S.: On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system. Commun. Math. Phys. 210(2), 447–466 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Strain R.M.: The Vlasov-Maxwell-Boltzmann system in the whole space. Commun. Math. Phys. 268(2), 543–567 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Ukai S.: On the existence of global solutions of a mixed problem for the nonlinear Boltzmann equation. Proc. Japan. Acad. 50, 179–184 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  21. Villani, C.: A survey of mathematical topics in kinetic theory. In: Handbook of Mathematical Fluid Dynamics, Friedlander, S., Serre, D. eds., Elsevier Sience, 2002, pp 71–305

  22. Yang T., Yu H.-J.: Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space. J. Diff. Eqs. 248(6), 1518–1560 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yang T., Yu H.-J.: Optimal convergence rates of Landau equation with external forcing in the whole space. Acta Math. Sci. Ser. B Engl. Ed. 9(4), 1035–1062 (2009)

    MathSciNet  Google Scholar 

  24. Yang T., Yu H.-J., Zhao H.-J.: Cauchy Problem for the Vlasov-Poisson-Boltzmann system. Arch. Rat. Mech. Anal. 182(3), 415–470 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yang T., Zhao H.-J.: Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system. Commun. Math. Phys. 268(3), 569–605 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Yang, T., Zhao, H.-J.: A new energy method for the Boltzmann equation. J. Math. Phys. 47 (5), 053301, 19 pp (2006)

    Google Scholar 

  27. Zhang M.: Stability of the Vlasov-Poisson-Boltzmann system in R 3. J. Diff. Eqs. 247(7), 2027–2073 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Yang.

Additional information

Communicated by P. Constantin

Dedicated to Professor Ling Hsiao on the Occasion of Her 70th Birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T., Yu, H. Optimal Convergence Rates of Classical Solutions for Vlasov-Poisson-Boltzmann System. Commun. Math. Phys. 301, 319–355 (2011). https://doi.org/10.1007/s00220-010-1142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1142-4

Keywords

Navigation