Skip to main content
Log in

Poisson-Lie Interpretation of Trigonometric Ruijsenaars Duality

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A geometric interpretation of the duality between two real forms of the complex trigonometric Ruijsenaars-Schneider system is presented. The phase spaces of the systems in duality are viewed as two different models of the same reduced phase space arising from a suitable symplectic reduction of the standard Heisenberg double of U(n). The collections of commuting Hamiltonians of the systems in duality are shown to descend from two families of ‘free’ Hamiltonians on the double which are dual to each other in a Poisson-Lie sense. Our results give rise to a major simplification of Ruijsenaars’ proof of the crucial symplectomorphism property of the duality map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev A.Yu., Malkin A.Z.: Symplectic structures associated to Lie-Poisson groups. Commun. Math. Phys. 162, 147–174 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Arutyunov, G.E., Chekhov, L.O., Frolov, S.A.: Quantum dynamical R-matrices. In: Moscow Seminar in Mathematical Physics, AMS Transl. Ser. 2, Vol. 191, Providence, RI: Amer. Math. Soc., 1999, pp. 1–32

  3. Calogero F.: Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419–436 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  4. Chalykh O.: Macdonald polynomials and algebraic integrability. Adv. Math. 166, 193–259 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cherednik I.: Double Affine Hecke Algebras. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  6. Duistermaat J.J., Grünbaum F.A.: Differential equations in the spectral parameter. Commun. Math. Phys. 103, 177–240 (1986)

    Article  MATH  ADS  Google Scholar 

  7. Duistermaat J.J., Kolk J.A.C.: Lie Groups. Springer, Berlin-Heidelberg-New York (2000)

    Book  MATH  Google Scholar 

  8. Etingof P.: Calogero-Moser Systems and Representation Theory. European Mathematical Society, Zurich (2007)

    Book  MATH  Google Scholar 

  9. Etingof P.I., Kirillov A.A. Jr: Macdonald’s polynomials and representations of quantum groups. Math. Res. Lett. 1, 279–294 (1994)

    MATH  MathSciNet  Google Scholar 

  10. Fehér L., Klimčí k C.: On the duality between the hyperbolic Sutherland and the rational Ruijsenaars-Schneider models. J. Phys. A: Math. Theor. 42, 185202 (2009)

    Article  ADS  Google Scholar 

  11. Fehér L., Klimčí k C.: Poisson-Lie generalization of the Kazhdan-Kostant-Sternberg reduction. Lett. Math. Phys. 87, 125–138 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Fehér L., Pusztai B.G.: A class of Calogero type reductions of free motion on a simple Lie group. Lett. Math. Phys. 79, 263–277 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Fock V., Gorsky A., Nekrasov N., Rubtsov V.: Duality in integrable systems and gauge theories. JHEP 07, 028 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  14. Fock, V.V., Rosly, A.A.: Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix. In: Moscow Seminar in Mathematical Physics, AMS Transl. Ser. 2, Vol. 191, Providence, RI: Amer. Math. Soc., 1999, pp. 67–86

  15. Gorsky A., Nekrasov N.: Relativistic Calogero-Moser model as gauged WZW theory. Nucl. Phys. B 436, 582–608 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Kazhdan D., Kostant B., Sternberg S.: Hamiltonian group actions and dynamical systems of Calogero type. Comm. Pure Appl. Math. XXXI, 481–507 (1978)

    Article  MathSciNet  Google Scholar 

  17. Klimčí k C.: Quasitriangular WZW model. Rev. Math. Phys. 16, 679–808 (2004)

    Article  MathSciNet  Google Scholar 

  18. Klimčí k C.: On moment maps associated to a twisted Heisenberg double. Rev. Math. Phys. 18, 781–821 (2006)

    Article  MathSciNet  Google Scholar 

  19. Leinaas J.M., Myrheim J.: On the theory of identical particles. Nuovo Cim. B 37, 1–23 (1977)

    Article  ADS  Google Scholar 

  20. Lu, J.-H.: Moment maps and reduction of Poisson actions. In: Proc. Sem. Sud-Rhodanien de Geometrie à Berkeley (1989), Springer-Verlag MSRI Publ., Vol. 20, Berlin-Heidelberg-New York: Springer, 1991, pp. 209–226

  21. Mimachi, K.: Macdonald’s operator from the center of the quantized universal enveloping algebra U q (gl(N)). Int. Math. Res. Notices IMRN 1994 no.10, 415–424 (1994)

  22. Moser J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16, 197–220 (1975)

    Article  MATH  ADS  Google Scholar 

  23. Nekrasov, N.: Infinite-dimensional algebras, many-body systems and gauge theories. In: Moscow Seminar in Mathematical Physics, AMS Transl. Ser. 2, Vol. 191, Providence, RI: Amer. Math. Soc., 1999, pp. 263–299

  24. Noumi M.: Macdonald’s symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces. Adv. Math. 123, 16–77 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Oblomkov A.A.: Double affine Hecke algebras and Calogero-Moser spaces. Represent. Theory 8, 243–266 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Oblomkov A.A., Stokman J.V.: Vector valued spherical functions and Macdonald-Koornwinder polynomials. Compos. Math. 141, 1310–1350 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ruijsenaars S.N.M.: Action-angle maps and scattering theory for some finite-dimensional integrable systems I. The pure soliton case. Commun. Math. Phys. 115, 127–165 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Ruijsenaars, S.N.M.: Finite-dimensional soliton systems. In: Integrable and Superintegrable Systems, ed. Kupershmidt, B. Singapore: World Scientific, 1990, pp. 165–206

  29. Ruijsenaars S.N.M.: Action-angle maps and scattering theory for some finite-dimensional integrable systems II. Solitons, antisolitons and their bound states. Publ. RIMS 30, 865–1008 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ruijsenaars S.N.M.: Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals. Publ. RIMS 31, 247–353 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ruijsenaars, S.N.M.: Systems of Calogero-Moser type. In: Proceedings of the 1994 CRM–Banff Summer School ‘Particles and Fields’, Berlin-Heidelberg-New York: Springer, 1999, pp. 251–352

  32. Ruijsenaars S.N.M., Schneider H.: A new class of integrable models and their relation to solitons. Ann. Phys. (N.Y.) 170, 370–405 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Semenov-Tian-Shansky M.A.: Dressing transformations and Poisson groups actions. Publ. RIMS 21, 1237–1260 (1985)

    Article  MathSciNet  Google Scholar 

  34. Sutherland B.: Exact results for a quantum many-body problem in one dimension. Phys. Rev. A4, 2019–2021 (1971)

    ADS  Google Scholar 

  35. Sutherland B.: Beautiful Models. World Scientific, Singapore (2004)

    MATH  Google Scholar 

  36. van Diejen J.F.: Deformations of Calogero-Moser systems and finite Toda chains. Theor. Math. Phys. 99, 549–554 (1994)

    Article  MATH  Google Scholar 

  37. van Diejen, J.F.: On the diagonalization of difference Calogero-Sutherland systems. In: Symmetries and Integrability of Difference Equations, Levi, D., Vinet, L., Winternitz, P. (eds.), Providence, RI: Amer. Math. Soc., 1996, pp. 79–89

  38. Zakrzewski S.: Free motion on the Poisson SU(N) group. J. Phys. A: Math. Gen. 30, 6535–6543 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Fehér.

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fehér, L., Klimčí k, C. Poisson-Lie Interpretation of Trigonometric Ruijsenaars Duality. Commun. Math. Phys. 301, 55–104 (2011). https://doi.org/10.1007/s00220-010-1140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1140-6

Keywords

Navigation