Advertisement

Communications in Mathematical Physics

, Volume 299, Issue 1, pp 45–87 | Cite as

Droplet Phases in Non-local Ginzburg-Landau Models with Coulomb Repulsion in Two Dimensions

  • Cyrill B. MuratovEmail author
Article

Abstract

We establish the behavior of the energy of minimizers of non-local Ginzburg-Landau energies with Coulomb repulsion in two space dimensions near the onset of multi-droplet patterns. Under suitable scaling of the background charge density with vanishing surface tension the non-local Ginzburg-Landau energy becomes asymptotically equivalent to a sharp interface energy with screened Coulomb interaction. Near the onset the minimizers of the sharp interface energy consist of nearly identical circular droplets of small size separated by large distances. In the limit the droplets become uniformly distributed throughout the domain. The precise asymptotic limits of the bifurcation threshold, the minimal energy, the droplet radii, and the droplet density are obtained.

Keywords

Diblock Copolymer Microphase Separation Droplet Phase Disjoint Connected Component Background Charge Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bray A.J.: Theory of phase-ordering kinetics. Adv. Phys. 43, 357–459 (1994)CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Landau L.D., Lifshits E.M.: Course of Theoretical Physics Volume 8. Pergamon Press, London (1984)Google Scholar
  3. 3.
    Grosberg A.Y., Khokhlov A.R.: Statistical Physics of Macromolecules. AIP Press, New York (1994)Google Scholar
  4. 4.
    Kerner B.S., Osipov V.V.: Autosolitons. Kluwer, Dordrecht (1994)Google Scholar
  5. 5.
    Vedmedenko E.Y.: Competing Interactions and Pattern Formation in Nanoworld. Weinheim, Wiley (2007)CrossRefGoogle Scholar
  6. 6.
    Muthukumar M., Ober C.K., Thomas E.L.: Competing interactions and levels of ordering in self- organizing polymeric materials. Science 277, 1225–1232 (1997)CrossRefGoogle Scholar
  7. 7.
    DeSimone, A., Kohn, R.V., Müller, S., Otto, F.: Magnetic microstructures—a paradigm of multiscale problems. In: ICIAM 99 (Edinburgh). Oxford: Oxford Univ. Press, pp. 175–190, 2000Google Scholar
  8. 8.
    Choksi R., Conti S., Kohn R.V., Otto F.: Ground state energy scaling laws during the onset and destruction of the intermediate state in a Type-I superconductor. Comm. Pure Appl. Math. 61, 595–626 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Choksi R.: Scaling laws in microphase separation of diblock copolymers. J. Nonlinear Sci. 11, 223–236 (2001)zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Seul M., Andelman D.: Domain shapes and patterns: the phenomenology of modulated phases. Science 267, 476–483 (1995)CrossRefADSGoogle Scholar
  11. 11.
    Yu, B., Sun, P., Chen, T., Jin, Q., Ding, D., Li, B., Shi, A.C.: Self-assembled morphologies of diblock copolymers confined in nanochannels: Effects of confinement geometry. J. Chem. Phys. 126, 204903 pp 1–5 (2007)Google Scholar
  12. 12.
    Kohn, R.V.: Energy-driven pattern formation. In: International Congress of Mathematicians. Vol. I. Zürich: Eur. Math. Soc., 2007, pp. 359–383Google Scholar
  13. 13.
    Muratov, C.B.: Theory of Domain Patterns in Systems with Long-Range Interactions of Coulombic Type. Ph. D. Thesis, Boston University, 1998Google Scholar
  14. 14.
    Muratov, C.B.: Theory of domain patterns in systems with long-range interactions of Coulomb type. Phys. Rev. E 66, 066108, pp. 1–25 (2002)Google Scholar
  15. 15.
    Care C.M., March N.H.: Electron crystallization. Adv. Phys. 24, 101–116 (1975)CrossRefADSGoogle Scholar
  16. 16.
    Emery V.J., Kivelson S.A.: Frustrated electronic phase-separation and high-temperature superconductors. Physica C 209, 597–621 (1993)CrossRefADSGoogle Scholar
  17. 17.
    Chen L.Q., Khachaturyan A.G.: Dynamics of simultaneous ordering and phase separation and effect of long-range Coulomb interactions. Phys. Rev. Lett. 70, 1477–1480 (1993)CrossRefADSGoogle Scholar
  18. 18.
    Nyrkova I.A., Khokhlov A.R., Doi M.: Microdomain structures in polyelectrolyte systems: calculation of the phase diagrams by direct minimization of the free energy. Macromolecules 27, 4220–4230 (1994)CrossRefADSGoogle Scholar
  19. 19.
    Ohta T., Kawasaki K.: Equilibrium morphologies of block copolymer melts. Macromolecules 19, 2621–2632 (1986)CrossRefADSGoogle Scholar
  20. 20.
    Bates F.S., Fredrickson G.H.: Block copolymers – designer soft materials. Physics Today 52, 32–38 (1999)CrossRefGoogle Scholar
  21. 21.
    Matsen M.W.: The standard Gaussian model for block copolymer melts. J. Phys.: Condens. Matter 14, R21–R47 (2002)CrossRefADSGoogle Scholar
  22. 22.
    de Gennes P.G.: Effect of cross-links on a mixture of polymers. J. de Physique – Lett. 40, 69–72 (1979)CrossRefGoogle Scholar
  23. 23.
    Stillinger F.H.: Variational model for micelle structure. J. Chem. Phys. 78, 4654–4661 (1983)CrossRefADSGoogle Scholar
  24. 24.
    Ohta T., Ito A., Tetsuka A.: Self-organization in an excitable reaction-diffusion system: synchronization of oscillating domains in one dimension. Phys. Rev. A 42, 3225–3232 (1990)CrossRefADSGoogle Scholar
  25. 25.
    Glotzer S., Di Marzio E.A., Muthukumar M.: Reaction-controlled morphology of phase-separating mixtures. Phys. Rev. Lett. 74, 2034–2037 (1995)CrossRefADSGoogle Scholar
  26. 26.
    Matsen M.W., Bates F.S.: Unifying weak- and strong-segregation block copolymer theories. Macromolecules 29, 1091–1098 (1996)CrossRefADSGoogle Scholar
  27. 27.
    Choksi R., Ren X.: On the derivation of a density functional theory for microphase separation of diblock copolymers. J. Stat. Phys. 113, 151–176 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Muratov, C.B., Novaga, M., Orlandi, G., García-Cervera, C.J.: Geometric strong segregation theory for compositionally asymmetric diblock copolymer melts. In: Novaga, M., Orlandi, G., eds.: Singularities in Nonlinear Evolution Phenomena and Applications. Pisa: Edizioni della Normale, 2009Google Scholar
  29. 29.
    Müller S.: Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. Part. Dif. 1, 169–204 (1993)zbMATHCrossRefGoogle Scholar
  30. 30.
    Ren X.F., Wei J.C.: On the multiplicity of solutions of two nonlocal variational problems. SIAM J. Math. Anal. 31, 909–924 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Ren X., Wei J.: On energy minimizers of the diblock copolymer problem. Interfaces Free Bound. 5, 193–238 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Ren X., Wei J.: Single droplet pattern in the cylindrical phase of diblock copolymer morphology. J. Nonlinear Sci. 17, 471–503 (2007)zbMATHCrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Ren X., Wei J.: Many droplet pattern in the cylindrical phase of diblock copolymer morphology. Rev. Math. Phys. 19, 879–921 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Ren X., Wei J.: Droplet solutions in the diblock copolymer problem with skewed monomer composition. Calc. Var. Part. Diff. Eqs. 25, 333–359 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Röger M., Tonegawa Y.: Convergence of phase-field approximations to the Gibbs–Thomson law. Calc. Var. PDE 32, 111–136 (2008)zbMATHCrossRefGoogle Scholar
  36. 36.
    Alberti G., Choksi R., Otto F.: Uniform energy distribution for an isoperimetric problem with long-range interactions. J. Amer. Math. Soc. 22, 569–605 (2009)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Choksi R., Peletier L.A.: Small volume fraction limit of the diblock copolymer problem: I. Sharp interface functional. SIAM J. Math. Anal. 42, 1334–1370 (2010)CrossRefGoogle Scholar
  38. 38.
    Nishiura Y., Ohnishi I.: Some mathematical aspects of the micro-phase separation in diblock copolymers. Physica D 84, 31–39 (1995)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Choksi R., Peletier M.A., Williams J.F.: On the phase diagram for microphase separation of diblock copolymers: an approach via a nonlocal Cahn-Hilliard functional. SIAM J. Appl. Math. 69, 1712–1738 (2008)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Petrich D.M., Goldstein R.E.: Nonlocal contour dynamics model for chemical front motion. Phys. Rev. Lett. 72, 1120–1123 (1994)CrossRefADSGoogle Scholar
  41. 41.
    Goldstein R.E., Muraki D.J., Petrich D.M.: Interface proliferation and the growth of labyrinths in a reaction-diffusion system. Phys. Rev. E 53, 3933–3957 (1996)CrossRefMathSciNetADSGoogle Scholar
  42. 42.
    Yip N.K.: Structure of stable solutions of a one-dimensional variational problem. ESAIM Control Optim. Calc. Var. 12, 721–751 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Ertl, G.: Reactions at surfaces: From atoms to complexity. http://nobelprize.org/nobel_prizes/chemistry/laureates/2007/ertl-lecture.html, 2007
  44. 44.
    Ertl G.: Reactions at surfaces: From atoms to complexity (Nobel lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008)CrossRefGoogle Scholar
  45. 45.
    Wintterlin J., Trost J., Renisch S., Schuster R., Zambelli T., Ertl G.: Real-time STM observations of atomic equilibrium fluctuations in an adsorbate system: O/Ru(0001). Surf. Sci. 394, 159–169 (1997)CrossRefADSGoogle Scholar
  46. 46.
    Abramowitz, M., Stegun, I. (eds): Handbook of Mathematical Functions. Washington, DC, National Bureau of Standards (1964)zbMATHGoogle Scholar
  47. 47.
    Theil F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262, 209–236 (2006)zbMATHCrossRefMathSciNetADSGoogle Scholar
  48. 48.
    Aftalion A., Serfaty S.: Lowest Landau level approach in superconductivity for the Abrikosov lattice close to \({H_{c_2}}\). Selecta Math. 13, 183–202 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Chen X., Oshita Y.: An application of the modular function in nonlocal variational problems. Arch. Rat. Mech. Anal. 186, 109–132 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Massari U.: Esistenza e regolarità delle ipersuperfice di curvatura media assegnata in R n. Arch. Rat. Mech. Anal. 55, 357–382 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (1983)zbMATHGoogle Scholar
  52. 52.
    Giusti E.: Minimal Surfaces and Functions of Bounded Variation. Volume 80 of Monographs in Mathematics. Birkhäuser, Basel (1984)Google Scholar
  53. 53.
    Ambrosio L., Paolini E.: Partial regularity for quasi minimizers of perimeter. Ric. Mat. 48, 167–186 (1998)MathSciNetGoogle Scholar
  54. 54.
    Sternberg, P., Topaloglu, I.: A Note on the Global Minimizers of the Nonlocal Isoperimetric Problem in Two Dimensions. Submitted, 2010Google Scholar
  55. 55.
    Choksi R., Sternberg P.: On the first and second variations of a nonlocal isoperimetric problem. J. Reine Angew. Math. 611, 75–108 (2007)zbMATHMathSciNetGoogle Scholar
  56. 56.
    Kerner B.S., Osipov V.V.: Phenomena in active distributed systems. Mikroelektronika 14, 389–407 (1985)Google Scholar
  57. 57.
    Muratov C.B.: Instabilities and disorder of the domain patterns in the systems with competing interactions. Phys. Rev. Lett. 78, 3149–3152 (1997)CrossRefADSGoogle Scholar
  58. 58.
    Muratov C.B., Osipov V.V.: General theory of instabilities for pattern with sharp interfaces in reaction-diffusion systems. Phys. Rev. E 53, 3101–3116 (1996)CrossRefMathSciNetADSGoogle Scholar
  59. 59.
    Fusco N., Maggi F., Pratelli A.: The sharp quantitative isoperimetric inequality. Ann. of Math. 168, 941–980 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Ewald P.: Die berechnung optischer und elektrostatischer gitterpotentiale. Ann. Phys. 369, 253–287 (1921)CrossRefGoogle Scholar
  61. 61.
    Muratov C.B.: Synchronization, chaos, and the breakdown of the collective domain oscillations in reaction-diffusion systems. Phys. Rev. E 55, 1463–1477 (1997)CrossRefADSGoogle Scholar
  62. 62.
    Kiessling M.K.H., Spohn H.: A note on the eigenvalue density of random matrices. Commun. Math. Phys. 199, 683–695 (1999)zbMATHCrossRefMathSciNetADSGoogle Scholar
  63. 63.
    Struwe M.: Variational Methods : Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Berlin (2000)zbMATHGoogle Scholar
  64. 64.
    Kerner B.S., Osipov V.V.: Stochastically inhomogeneous structures in nonequilibrium systems. Sov. Phys. – JETP 52, 1122–1132 (1980)ADSGoogle Scholar
  65. 65.
    Mimura M., Tabata M., Hosono Y.: Multiple solutions of two-point boundary value problems of Neumann type with a small parameter. SIAM J. Math. Anal. 11, 613–631 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Modica L., Mortola S.: Un esempio di Γ -convergenza. Boll. Un. Mat. Ital. B 14, 285–299 (1977)zbMATHMathSciNetGoogle Scholar
  67. 67.
    Modica L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Rat. Mech. Anal. 98, 123–142 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    Attouch H., Buttazzo G., Michaille G.: Variational Analysis in Sobolev and BV Spaces. Society for Industrial and Applied Mathematics, Philadelphia (2006)zbMATHGoogle Scholar
  69. 69.
    Fife P.C., McLeod J.B.: The approach of solutions of nonlinear diffusion equations to traveling front solutions. Arch. Rat. Mech. Anal. 65, 335–361 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Otto F., Viehmann T.: Domain branching in uniaxial ferromagnets - asymptotic behavior of the energy. Calc. of Var. Part. Diff. Eqs. 38(1-2), 135–181 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Knüpfer, H., Muratov, C.B.: Domain structure of bulk ferromagnetic crystals in applied fields near saturation. Submitted, 2010, available at http://arXiv.org/abs/1004.4292v1[nlin.PS], 2010

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations