Advertisement

Communications in Mathematical Physics

, Volume 299, Issue 1, pp 225–254 | Cite as

Chern-Weil Construction for Twisted K-Theory

  • Kiyonori Gomi
  • Yuji TerashimaEmail author
Article
  • 169 Downloads

Abstract

We give a finite-dimensional and geometric construction of a Chern character for twisted K-theory, introducing a notion of connection on a twisted vectorial bundle which can be considered as a finite-dimensional approximation of a twisted family of Fredholm operators. Our construction is applicable to the case of any classes giving the twisting, and agrees with the Chern character of bundle gerbe modules in the case of torsion classes.

Keywords

Vectorial Bundle Line Bundle Open Cover Cohomology Class Chern Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.F., Segal, G.: Twisted K-theory. Ukr. Mat. Visn. 1(3), 287–330 (2004); translation in Ukr. Math. Bull. 1(3), 291–334 (2004)Google Scholar
  2. 2.
    Atiyah, M., Segal, G.: Twisted K-theory and cohomology. Inspired by S. S. Chern, Nankai Tracts Math. 11, Hackensack, NJ: World Sci. Publ., 2006, pp. 5–43Google Scholar
  3. 3.
    Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Graduate Texts in Mathematics. 82, New York-Berlin: Springer-Verlag, 1982Google Scholar
  4. 4.
    Bouwknegt P., Carey A., Mathai V., Murray M.K., Stevenson D.: Twisted K-theory and K-theory of bundle gerbes. Commun. Math. Phys. 228(1), 17–45 (2002)zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Carey A.L., Mickelsson J., Wang B.-L.: Differential twisted K-theory and applications. J. Geom. Phys. 59(5), 632–653 (2009)zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Donovan P., Karoubi M.: Graded Brauer groups and K-theory with local coefficients. Inst. Hautes Études Sci. Publ. Math. No. 38, 5–25 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Freed D.S., Hopkins M.J., Teleman C.: Twisted equivariant K-theory with complex coefficients. J. Topol. 1(1), 16–44 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Furuta, M.: Finite Dimensional Approximations in Geometry. Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 395–403Google Scholar
  9. 9.
    Furuta M.: Index Theorem, II. (Japanese) Iwanami Series in Modern Mathematics. Iwanami Shoten, Tokyo (2002)Google Scholar
  10. 10.
    Gomi K.: Twisted K-theory and finite-dimensional approximation. Comm. Math. Phys. 294(3), 863–889 (2010)CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Hitchin, N.: Lectures on Special Lagrangian Submanifolds. Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), AMS/IP Stud. Adv. Math. 23, Providence, RI: Amer. Math. Soc., pp. 151–182 (2001)Google Scholar
  12. 12.
    Moore, G.: K-theory from a physical perspective. In: Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note Ser. 308, Cambridge: Cambridge Univ. Press, 2004, pp. 194–234Google Scholar
  13. 13.
    Mathai V., Stevenson D.: Chern character in twisted K-theory: equivariant and holomorphic cases. Commun. Math. Phys. 236(1), 161–186 (2003)zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Murray M.K.: Bundle gerbes. J. London Math. Soc. (2) 54(2), 403–416 (1996)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Murray M.K., Stevenson D.: Bundle gerbes: stable isomorphism and local theory. J. London Math. Soc. (2) 62(3), 925–937 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Quillen D.: Superconnections and the Chern character. Topology 24(1), 89–95 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Quillen D.: Superconnection character forms and the Cayley transform. Topology 27(2), 211–238 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Rosenberg J.: Continuous-trace algebras from the bundle theoretic point of view. J. Austral. Math. Soc. Ser. A 47(3), 368–381 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Tomoda A.: On the splitting principle of bundle gerbe modules. Osaka J. Math. 44(1), 231–246 (2007)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Tu J.-L., Xu P.: Chern character for twisted K-theory of orbifolds. Adv. Math. 207(2), 455–483 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Tu J.-L., Xu P., Laurent-Gengoux C.: Twisted K-theory of differentiable stacks. Ann. Sci. Ecole Norm. Sup. (4) 37(6), 841–910 (2004)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsKyoto UniversityKyotoJapan
  2. 2.Department of MathematicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations