Advertisement

Communications in Mathematical Physics

, Volume 299, Issue 1, pp 163–224 | Cite as

Four-Dimensional Wall-Crossing via Three-Dimensional Field Theory

  • Davide Gaiotto
  • Gregory W. Moore
  • Andrew NeitzkeEmail author
Article

Abstract

We give a physical explanation of the Kontsevich-Soibelman wall-crossing formula for the BPS spectrum in Seiberg-Witten theories. In the process we give an exact description of the BPS instanton corrections to the hyperkähler metric of the moduli space of the theory on \({\mathbb R^3 \times S^1}\). The wall-crossing formula reduces to the statement that this metric is continuous. Our construction of the metric uses a four-dimensional analogue of the two-dimensional tt* equations.

Keywords

Gauge Theory Wilson Line Marginal Stability Coulomb Branch Irregular Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cecotti S., Fendley P., Intriligator K.A., Vafa C.: A new supersymmetric index. Nucl. Phys. B386, 405–452 (1992)CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Seiberg N., Witten E.: Electric-magnetic duality, monopole condensation, and confinement in \({\mathcal N=2}\) supersymmetric Yang-Mills theory. Nucl. Phys. B426, 19–52 (1994)CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Seiberg N., Witten E.: Monopoles, duality and chiral symmetry breaking in \({\mathcal N=2}\) supersymmetric QCD. Nucl. Phys. B431, 484–550 (1994)CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Denef, F., Moore, G.W.: “Split states, entropy enigmas, holes and halos.” http://arXiv.org/abs/hep-th/0702146v2, 2007
  5. 5.
    Denef F.: Supergravity flows and D-brane stability. JHEP 08, 050 (2000)CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Denef, F.: “On the correspondence between D-branes and stationary supergravity solutions of type II Calabi-Yau compactifications.” http://arXiv.org/abs/hep-th/0010222v1, 2000
  7. 7.
    Kontsevich, M., Soibelman, Y.: “Stability structures, motivic Donaldson-Thomas invariants and cluster transformations.” http://arXiv.org/abs/0811.2435v1[math.AG], 2008
  8. 8.
    Garcia-Etxebarria I., Uranga A.M.: Non-perturbative superpotentials across lines of marginal stability. JHEP 0801, 033 (2008)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ooguri H., Vafa C.: Summing up D-instantons. Phys. Rev. Lett. 77, 3296–3298 (1996)zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Seiberg N., Shenker S.H.: Hypermultiplet moduli space and string compactification to three dimensions. Phys. Lett. B388, 521–523 (1996)MathSciNetADSGoogle Scholar
  11. 11.
    Cecotti S., Vafa C.: On classification of \({\mathcal N=2}\) supersymmetric theories. Commun. Math. Phys. 158, 569–644 (1993)zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Seiberg, N., Witten, E.: “Gauge dynamics and compactification to three dimensions.” http://arXiv.org/abs/hep-th/9607163v1, 1996
  13. 13.
    Cecotti S., Vafa C.: Topological-antitopological fusion. Nucl. Phys. B367, 359–461 (1991)CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Karlhede A., Lindstrom U., Roček M.: Selfinteracting tensor multiplets in \({\mathcal N=2}\) superspace. Phys. Lett. B147, 297 (1984)ADSGoogle Scholar
  15. 15.
    Lindstrom U., Rocek M.: New hyperkahler metrics and new supermultiplets. Commun. Math. Phys. 115, 21 (1988)CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Lindstrom U., Rocek M.: Properties of hyperkahler manifolds and their twistor spaces. Commun. Math. Phys. 293, 257–278 (2010)CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Kontsevich, M., Soibelman, Y.: “Affine structures and non-Archimedean analytic spaces.” In: The unity of mathematics, Vol. 244 of Progr. Math., Boston, MA: Birkhäuser Boston, 2006, pp. 321–385Google Scholar
  18. 18.
    Joyce, D.: “Holomorphic generating functions for invariants counting coherent sheaves on Calabi-Yau 3-folds.” http://arXiv.org/abs/hep-th/0607039v1, 2006
  19. 19.
    Bridgeland, T., Toledano Laredo, V.: “Stability conditions and Stokes factors.” http://arXiv.org/abs/0801.3974v1[math.AG], 2008
  20. 20.
    Bridgeland T.: Stability conditions on triangulated categories. Ann. Math. (2) 166(2), 317–345 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Neitzke A., Pioline B., Vandoren S.: Twistors and black holes. JHEP 04, 038 (2007)CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Losev A., Nekrasov N.A., Shatashvili S.L.: Issues in topological gauge theory. Nucl. Phys. B534, 549–611 (1998)CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Losev, A., Nekrasov, N., Shatashvili, S.L.: “The freckled instantons.” http://arXiv.org/abs/hep-th/9908204v2, 1999
  24. 24.
    Ooguri H., Vafa C., Verlinde E.P.: Hartle-Hawking wave-function for flux compactifications. Lett. Math. Phys. 74, 311–342 (2005)zbMATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Dorey N., Hollowood T.J., Tong D.: The BPS spectra of gauge theories in two and four dimensions. JHEP 05, 006 (1999)CrossRefADSGoogle Scholar
  26. 26.
    Ritz A.: Superconformal R-charges and dyon multiplicities in N = 2 gauge theories. Phys. Rev. D75, 085008 (2007)MathSciNetADSGoogle Scholar
  27. 27.
    Alexandrov S., Pioline B., Saueressig F., Vandoren S.: Linear perturbations of quaternionic metrics - I. The Hyperkahler case. Lett. Math. Phys. 87, 225–265 (2009)zbMATHCrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Lerche, W.: “Introduction to Seiberg-Witten theory and its stringy origin.” Prepared for CERN-Santiago de Compostela-La Plata Meeting on Trends in Theoretical Physics, CERN-Santiago de Compostela-La Plata, Argentina, 28 Apr - 6 May 1997Google Scholar
  29. 29.
    Freed D.S.: Special Kaehler manifolds. Commun. Math. Phys. 203, 31–52 (1999)zbMATHCrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Witten, E.: “Dynamics of quantum field theory.” In: Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), Providence, RI: Amer. Math. Soc., 1999, pp. 1119–1424Google Scholar
  31. 31.
    Bilal A., Ferrari F.: Curves of Marginal Stability and Weak and Strong-Coupling BPS Spectra in N = 2 Supersymmetric QCD. Nucl. Phys. B480, 589–622 (1996)CrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Bilal A., Ferrari F.: The Strong-Coupling Spectrum of the Seiberg-Witten Theory. Nucl. Phys. B469, 387–402 (1996)MathSciNetADSGoogle Scholar
  33. 33.
    Witten E.: Five-brane effective action in M-theory. J. Geom. Phys. 22, 103–133 (1997)zbMATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Freed, D.S.: “Dirac charge quantization and generalized differential cohomology.” http://arXiv.org/abs/hep-th/0011220v2, 2001
  35. 35.
    Hopkins M.J., Singer I.M.: Quadratic functions in geometry, topology, and M-theory. J. Diff. Geom. 70, 329–452 (2005)zbMATHMathSciNetGoogle Scholar
  36. 36.
    Belov, D., Moore, G.W.: “Holographic action for the self-dual field.,” http://arXiv.org/abs/hep-th/0605038v1, 2006
  37. 37.
    Hitchin N.J., Karlhede A., Lindstrom U., Roček M.: Hyperkähler metrics and supersymmetry. Commun. Math. Phys. 108, 535 (1987)zbMATHCrossRefADSGoogle Scholar
  38. 38.
    Hitchin, N.: “Hyper-Kähler manifolds.” Astérisque (1992), no. 206, Exp. No. 748, 3, 137–166. Séminaire Bourbaki, Vol. 1991/92Google Scholar
  39. 39.
    Dubrovin B.: Geometry and integrability of topological-antitopological fusion. Commun. Math. Phys. 152(3), 539–564 (1993)zbMATHCrossRefMathSciNetADSGoogle Scholar
  40. 40.
    Argyres P.C., Plesser M.R., Seiberg N.: The Moduli Space of N = 2 SUSY QCD and Duality in N = 1 SUSY QCD. Nucl. Phys. B471, 159–194 (1996)CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    Cecotti S., Vafa C.: Ising model and \({\mathcal N=2}\) supersymmetric theories. Commun. Math. Phys. 157, 139–178 (1993)zbMATHCrossRefMathSciNetADSGoogle Scholar
  42. 42.
    Argyres P.C., Douglas M.R.: New phenomena in SU(3) supersymmetric gauge theory. Nucl. Phys. B448, 93–126 (1995)CrossRefMathSciNetADSGoogle Scholar
  43. 43.
    Argyres P.C., Plesser M.R., Seiberg N., Witten E.: New \({\mathcal N=2}\) Superconformal Field Theories in Four Dimensions. Nucl. Phys. B461, 71–84 (1996)CrossRefMathSciNetADSGoogle Scholar
  44. 44.
    Seiberg N.: Naturalness versus supersymmetric nonrenormalization theorems. Phys. Lett. B318, 469–475 (1993)MathSciNetADSGoogle Scholar
  45. 45.
    Zamolodchikov A.B.: Thermodynamic Bethe ansatz in relativistic models. Scaling three state Potts and Lee-Yang models. Nucl. Phys. B342, 695–720 (1990)CrossRefMathSciNetADSGoogle Scholar
  46. 46.
    Nekrasov, N.A., Shatashvili, S.L.: “Quantum integrability and supersymmetric vacua.” http://arXiv.org/abs/0901.4748v2[hep-th], 2009

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Davide Gaiotto
    • 1
  • Gregory W. Moore
    • 2
  • Andrew Neitzke
    • 1
    Email author
  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonUSA
  2. 2.NHETC and Department of Physics and AstronomyRutgers UniversityPiscatawayUSA

Personalised recommendations