Communications in Mathematical Physics

, Volume 299, Issue 1, pp 129–161 | Cite as

Integrable Evolution Equations on Spaces of Tensor Densities and Their Peakon Solutions

  • Jonatan LenellsEmail author
  • Gerard Misiołek
  • Feride Tiğlay


We study a family of equations defined on the space of tensor densities of weight λ on the circle and introduce two integrable PDE. One of the equations turns out to be closely related to the inviscid Burgers equation while the other has not been identified in any form before. We present their Lax pair formulations and describe their bihamiltonian structures. We prove local wellposedness of the corresponding Cauchy problem and include results on blow-up as well as global existence of solutions. Moreover, we construct “peakon” and “multi-peakon” solutions for all λ ≠ 0, 1, and “shock-peakons” for λ = 3. We argue that there is a natural geometric framework for these equations that includes other well-known integrable equations and which is based on V. Arnold’s approach to Euler equations on Lie groups.


Quadratic Differential Riemannian Submersion Tensor Density Bihamiltonian Structure Coadjoint Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.
    Arnold V.: Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses application à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16, 319–361 (1966)Google Scholar
  2. BSS.
    Beals R., Sattinger D., Szmigielski J.: Multipeakons and the classical moment problem. Adv. Math. 154, 229–257 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  3. CH.
    Camassa R., Holm D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. CM.
    Constantin A., McKean H.P.: A shallow water equation on the circle. Comm. Pure Appl. Math. 52, 949–982 (1999)CrossRefMathSciNetGoogle Scholar
  5. DP.
    Degasperis, A., Procesi, M.: Asymptotic integrability. In: Symmetry and Perturbation Theory (Rome 1998), River Edge, NJ: World Scientific Publishers, 1999Google Scholar
  6. DHH.
    Degasperis A., Holm D.D., Hone A.N.W.: A new integrable equation with peakon solutions. Teoret. Mat. Fiz. 133, 1463–1474 (2002)MathSciNetGoogle Scholar
  7. EM.
    Ebin D., Marsden J.E.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math. 92, 102–163 (1970)CrossRefMathSciNetGoogle Scholar
  8. FF.
    Fuchssteiner B., Fokas A.S.: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D 4, 47–66 (1981)CrossRefMathSciNetADSGoogle Scholar
  9. GR.
    Guieu L., Roger C.: L’Algebre et le Groupe de Virasoro: aspects geometriques et algebriques, generalisations. Publications CRM, Montreal (2007)zbMATHGoogle Scholar
  10. HM.
    Holm, D.D., Marsden, J.E.: Momentum maps and measure valued solutions (peakons, filaments, and sheets) of the Euler-Poincaré equations for the diffeomorphism group. In: The Breadth of Symplectic and Poisson Geometry, Progr. Math. 232, Boston, MA: Birkhäuser, 2005, pp. 203–235Google Scholar
  11. HW.
    Hone A.N.W., Wang J.P.: Prolongation algebras and Hamiltonian operators for peakon equations. Inverse Problems 19, 129–145 (2003)zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. HoS.
    Holm D.D., Staley M.F.: Wave structure and nonlinear balances in a family of evolutionary PDEs. SIAM J. Appl. Dynam. Syst. 2, 323–380 (2003) (electronic)zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. HuS.
    Hunter J.K., Saxton R.: Dynamics of director fields. SIAM J. Appl. Math. 51, 1498–1521 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  14. KLM.
    Khesin B., Lenells J., Misiołek G.: Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms. Math. Ann. 342, 617–656 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  15. KM.
    Khesin B., Misiołek G.: Euler equations on homogeneous spaces and Virasoro orbits. Adv. Math. 176, 116–144 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  16. KW.
    Khesin, B., Wendt, R.: The Geometry of Infinite-Dimensional Groups. Ergebnisse der Mathematik Vol. 51, New York: Springer, 2008Google Scholar
  17. K.
    Kirillov, A.: Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments. Lect. Notes in Math. 970, New York: Springer-Verlag, 1982, pp. 101–123Google Scholar
  18. KY.
    Kirillov A., Yuriev D.: Kähler geometry of the infinite dimensional homogeneous space M = Diff+ (S 1)/Rot(S 1). Funkt. Anal. Prilozh. 21, 35–46 (1987)Google Scholar
  19. L.
    Lang S.: Differential Manifolds. Springer, New York (1972)zbMATHGoogle Scholar
  20. Le.
    Lenells J.: Traveling wave solutions of the Camassa-Holm equation. J. Diff. Eq. 217, 393–430 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  21. Lu.
    Lundmark H.: Formation and dynamics of shock waves in the Degasperis-Procesi equation. J. Nonlinear Sci. 17, 169–198 (2007)zbMATHCrossRefMathSciNetADSGoogle Scholar
  22. LS.
    Lundmark H., Szmigielski J.: Degasperis-Procesi peakons and the discrete cubic string. Int. Math. Res. Pap. 2, 53–116 (2005)CrossRefMathSciNetGoogle Scholar
  23. M1.
    Misiołek G.: A shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys. 24, 203–208 (1998)zbMATHCrossRefMathSciNetADSGoogle Scholar
  24. M2.
    Misiołek G.: Classical solutions of the periodic Camassa-Holm equation. Geom. Funct. Anal. 12, 1080–1104 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  25. ON.
    O’Neill B.: Submersions and geodesics. Duke Math. J. 34, 363–373 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  26. O.
    Ovsienko, V.: Coadjoint representation of Virasoro-type Lie algebras and differential operators on tensor-densities. In: Infinite dimensional Kähler manifolds (Oberwolfach 1995), DMV Sem. 31, Basel: Birkhäuser, 2001, pp. 231–255Google Scholar
  27. OT.
    Ovsienko V., Tabachnikov S.: Projective Differential Geometry. Cambridge Univ. Press, Cambridge (2005)zbMATHGoogle Scholar
  28. ST.
    Saxton R., Tıuglay F.: Global existence of some infinite energy solutions for a perfect incompressible fluid. SIAM J. Math. Anal. 40, 1499–1515 (2008)CrossRefMathSciNetGoogle Scholar
  29. T.
    Taylor M.: Pseudodifferential Operators and Nonlinear PDE. Birkhäuser, Boston, Boston, MA (1991)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jonatan Lenells
    • 1
    Email author
  • Gerard Misiołek
    • 2
  • Feride Tiğlay
    • 3
    • 4
  1. 1.Institut für Angewandte MathematikLeibniz Universität HannoverHannoverGermany
  2. 2.Department of MathematicsUniversity of Notre DameNotre DameUSA
  3. 3.Department of MathematicsUniversity of New OrleansNew OrleansUSA
  4. 4.Section de MathématiquesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations