Skip to main content
Log in

Degree Complexity of Birational Maps Related to Matrix Inversion

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For a q × q matrix x = (x i, j) we let \({J(x)=(x_{i,j}^{-1})}\) be the Hadamard inverse, which takes the reciprocal of the elements of x. We let \({I(x)=(x_{i,j})^{-1}}\) denote the matrix inverse, and we define \({K=I\circ J}\) to be the birational map obtained from the composition of these two involutions. We consider the iterates \({K^n=K\circ\cdots\circ K}\) and determine the degree complexity of K, which is the exponential rate of degree growth \({\delta(K)=\lim_{n\to\infty}\left( deg(K^n) \right)^{1/n}}\) of the degrees of the iterates. Earlier studies of this map were restricted to cyclic matrices, in which case K may be represented by a simpler map. Here we show that for general matrices the value of δ(K) is equal to the value conjectured by Anglès d’Auriac, Maillard and Viallet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anglès d’Auriac J.C., Maillard J.M., Viallet C.M.: A classification of four-state spin edge Potts models. J. Phys. A 35, 9251–9272 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Anglès d’Auriac J.C., Maillard J.M., Viallet C.M.: On the complexity of some birational transformations. J. Phys. A 39(14), 3641–3654 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Bedford E., Kim K.-H.: On the degree growth of birational mappings in higher dimension. J. Geom. Anal. 14, 567–596 (2004)

    MATH  MathSciNet  Google Scholar 

  4. Bedford E., Kim K.-H.: Degree growth of matrix inversion: birational maps of symmetric. cyclic matrices. Disc. Contin. Dyn. Syst. 21(4), 977–1013 (2008)

    MATH  MathSciNet  Google Scholar 

  5. Bellon M., Viallet C.M.: Algebraic entropy. Commun. Math. Phys. 204, 425–437 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Boukraa S., Hassani S., Maillard J.-M.: Noetherian mappings. Physica D 185(1), 3–44 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Boukraa S., Maillard J.-M.: Factorization properties of birational mappings. Physica A 220, 403–470 (1995)

    Article  ADS  Google Scholar 

  8. Diller J., Favre C.: Dynamics of birational maps of surfaces. Amer. J. Math. 123(6), 1135–1169 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Preissmann E., Anglès d’Auriac J.-Ch., Maillard J.-M.: Birational mappings and matrix subalgebra from the chiral Potts model. J. Math. Phys. 50, 013302 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  10. Truong, T.: Degree complexity of matrix inversion: symmetric case. Preprint

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Bedford.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedford, E., Truong, T.T. Degree Complexity of Birational Maps Related to Matrix Inversion. Commun. Math. Phys. 298, 357–368 (2010). https://doi.org/10.1007/s00220-010-1063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1063-2

Keywords

Navigation