Skip to main content
Log in

Time Functions as Utilities

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Every time function on spacetime gives a (continuous) total preordering of the spacetime events which respects the notion of causal precedence. The problem of the existence of a (semi-)time function on spacetime and the problem of recovering the causal structure starting from the set of time functions are studied. It is pointed out that these problems have an analog in the field of microeconomics known as utility theory. In a chronological spacetime the semi-time functions correspond to the utilities for the chronological relation, while in a K-causal (stably causal) spacetime the time functions correspond to the utilities for the K + relation (Seifert’s relation). By exploiting this analogy, we are able to import some mathematical results, most notably Peleg’s and Levin’s theorems, to the spacetime framework. As a consequence, we prove that a K-causal (i.e. stably causal) spacetime admits a time function and that the time or temporal functions can be used to recover the K + (or Seifert) relation which indeed turns out to be the intersection of the time or temporal orderings. This result tells us in which circumstances it is possible to recover the chronological or causal relation starting from the set of time or temporal functions allowed by the spacetime. Moreover, it is proved that a chronological spacetime in which the closure of the causal relation is transitive (for instance a reflective spacetime) admits a semi-time function. Along the way a new proof avoiding smoothing techniques is given that the existence of a time function implies stable causality, and a new short proof of the equivalence between K-causality and stable causality is given which takes advantage of Levin’s theorem and smoothing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrikopoulos, A.: Szpilrajn-type theorems in economics (May 2009). Mimeo, Univ. of Ionnina. Available at http://ideas.repec.org/p/pra/mprap/14345.html

  2. Aumann R.J.: Utility theory without the completeness axiom. Econometrica 30, 445–462 (1962)

    Article  MATH  Google Scholar 

  3. Beem J.K.: Conformal changes and geodesic completeness. Commun. Math. Phys. 49, 179–186 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Bernal A.N., Sánchez M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50 (2005)

    Article  MATH  ADS  Google Scholar 

  5. Bernal A.N., Sánchez M.: Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’. Class. Quant. Grav. 24, 745–749 (2007)

    Article  MATH  ADS  Google Scholar 

  6. Bossert W.: Intersection quasi-orderings: An alternative proof. Order 16, 221–225 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bridges, D.S., Mehta, G.B.: Representations of preference orderings, Vol. 442 of Lectures Notes in Economics and Mathematical Systems. Berlin: Springer-Verlag, 1995

  8. Candeal-Haro J.C., Induráin-Eraso E.: Utility representations from the concept of measure. Math. Soc. Sci. 26, 51–62 (1993)

    Article  MATH  Google Scholar 

  9. Clarke C.J.S., Joshi P.S.: On reflecting spacetimes. Class. Quant. Grav. 5, 19–25 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Debreu, G.: Representation of preference ordering by a numerical function. In: Decision Processes, ed. Thrall, R.M., Coombs, C.H., Davis, R.L., New York: John Wiley, 1954, pp. 159–165

  11. Debreu G.: Continuity properties of Paretian utility. Int. Econ. Rev. 5, 285–293 (1964)

    Article  Google Scholar 

  12. Dieckmann J.: Volume functions in general relativity. Gen. Rel. Grav. 20, 859–867 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Donaldson D., Weymark J.A.: A quasiordering is the intersection of orderings. J. Econ. Theory 78, 328–387 (1998)

    Article  MathSciNet  Google Scholar 

  14. Dushnik B., Miller E.: Partially ordered sets. Amer. J. Math. 63, 600–610 (1941)

    Article  MathSciNet  Google Scholar 

  15. Eilenberg S.: Ordered topological spaces. Amer. J. Math. 63, 39–45 (1941)

    Article  MathSciNet  Google Scholar 

  16. Evren, O., Ok, E.A.: On the multi-utility representation of preference relations. J. Econ. Theory (in press)

  17. Geroch R.: Domain of dependence. J. Math. Phys. 11, 437–449 (1970)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Hawking S.W.: The existence of cosmic time functions. Proc. Roy. Soc. London, series A 308, 433–435 (1968)

    Article  ADS  Google Scholar 

  19. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge: Cambridge University Press, 1973

    Book  MATH  Google Scholar 

  20. Hawking S.W., Sachs R.K.: Causally continuous spacetimes. Commun. Math. Phys. 35, 287–296 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  21. Herden G.: On the existence of utility functions. Math. Soc. Sci. 17, 297–313 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. Herden G.: On some equivalent approaches to mathematical utility theory. Math. Soc. Sci. 29, 19–31 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Herden G., Pallack A.: On the continuous analogue of the Szpilrajn theorem I. Math. Soc. Sci. 43, 115–134 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kim J.-C., Kim J.-H.: Totally vicious spacetimes. J. Math. Phys. 34, 2435–2439 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Lee L.-F.: The theorems of Debreu and Peleg for ordered topological spaces. Econometrica 40, 1151–1153 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  26. Levin V.L.: A continuous utility theorem for closed preorders on a σ-compact metrizable space. Sov. Math. Dokl. 28, 715–718 (1983)

    MATH  Google Scholar 

  27. Malament D.B.: Causal theories of time and the conventionality of simultaneity. Noûs 11, 293–300 (1977)

    Article  Google Scholar 

  28. Mehta G.: Topological ordered spaces and utility functions. Int. Econ. Rev. 18, 779–782 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  29. Mehta G.: Ordered topological spaces and the theorems of Debreu and Peleg. Indian J. Pure Appl. Math. 14, 1174–1182 (1983)

    MATH  MathSciNet  Google Scholar 

  30. Minguzzi E.: Simultaneity and generalized connections in general relativity. Class. Quant. Grav. 20, 2443–2456 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Minguzzi E.: The causal ladder and the strength of K-causality. I. Class. Quant. Grav. 25, 015009 (2008)

    Article  MathSciNet  Google Scholar 

  32. Minguzzi E.: The causal ladder and the strength of K-causality. II. Class. Quant. Grav. 25, 015010 (2008)

    Article  MathSciNet  Google Scholar 

  33. Minguzzi E.: Limit curve theorems in Lorentzian geometry. J. Math. Phys. 49, 092501 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  34. Minguzzi E.: Non-imprisonment conditions on spacetime. J. Math. Phys. 49, 062503 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  35. Minguzzi E.: K-causality coincides with stable causality. Commun. Math. Phys. 290, 239–248 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. In: Baum, H., Alekseevsky, D. (eds.), Recent developments in pseudo-Riemannian geometry of ESI Lect. Math. Phys., Zurich: Eur. Math. Soc. Publ. House, 2008, pp. 299–358 (2008)

  37. Nachbin, L.: Topology and order. Princeton: D. Van Nostrand Company, Inc., 1965

  38. Nomizu K., Ozeki H.: The existence of complete Riemannian metrics. Proc. Amer. Math. Soc. 12, 889–891 (1961)

    MATH  MathSciNet  Google Scholar 

  39. Peleg B.: Utility functions for partially ordered topological spaces. Econometrica 38, 93–96 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  40. Rader T.: The existence of a utility function to represent preferences. Rev. Econ. Stud. 30, 229–232 (1963)

    Article  Google Scholar 

  41. Robb, A.A.: A Theory of Time and Space. Cambridge: Cambridge University Press, 1914

    Google Scholar 

  42. Seifert H.: The causal boundary of space-times. Gen. Rel. Grav. 1, 247–259 (1971)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. Seifert H.J.: Smoothing and extending cosmic time functions. Gen. Rel. Grav. 8, 815–831 (1977)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Sondermann D.: Utility representations for partial orders. J. Econ. Theory 23, 183–188 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  45. Sorkin R.D., Woolgar E.: A causal order for spacetimes with C 0 Lorentzian metrics: proof of compactness of the space of causal curves. Class. Quant. Grav. 13, 1971–1993 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. Szpilrajn E.: Sur l’extension de l’ordre partiel. Fund. Math. 16, 386–389 (1930)

    MATH  Google Scholar 

  47. Ward L.E. Jr: Partially ordered topological spaces. Proc. Am. Math. Soc. 5, 144–161 (1954)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Minguzzi.

Additional information

Communicated by P.T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minguzzi, E. Time Functions as Utilities. Commun. Math. Phys. 298, 855–868 (2010). https://doi.org/10.1007/s00220-010-1048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1048-1

Keywords

Navigation