Skip to main content
Log in

On Infinite-Volume Mixing

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the context of the long-standing issue of mixing in infinite ergodic theory, we introduce the idea of mixing for observables possessing an infinite-volume average. The idea is borrowed from statistical mechanics and appears to be relevant, at least for extended systems with a direct physical interpretation. We discuss the pros and cons of a few mathematical definitions that can be devised, testing them on a prototypical class of infinite measure-preserving dynamical systems, namely, the random walks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson, J.: An introduction to infinite ergodic theory. Mathematical Surveys and Monographs, 50. Providence, RI: Amer. Math. Soc., 1997

  2. Bunimovich L.A., Sinai Ya.G.: Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys. 78(4), 479–497 (1980/81)

    Article  MathSciNet  ADS  Google Scholar 

  3. Chernov, N., Markarian, R.: Chaotic billiards. Mathematical Surveys and Monographs, 127. Providence, RI: Amer. Math. Soc., 2006

  4. Friedman, N.A.: Mixing transformations in an infinite measure space. In: Studies in probability and ergodic theory, Adv. in Math. Suppl. Stud., 2. New York-London: Academic Press, 1978, pp. 167–184

  5. Hajian A.B., Kakutani S.: Weakly wandering sets and invariant measures. Trans. Amer. Math. Soc. 110, 136–151 (1964)

    MATH  MathSciNet  Google Scholar 

  6. Hopf E.: Ergodentheorie. Springer-Verlag, Berlin (1937)

    Google Scholar 

  7. Isola S.: Renewal sequences and intermittency. J. Stat. Phys. 97(1–2), 263–280 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Isola S.: On systems with finite ergodic degree. Far East J. Dyn. Syst. 5(1), 1–62 (2003)

    MATH  MathSciNet  Google Scholar 

  9. Kakutani S., Parry W.: Infinite measure preserving transformations with “mixing”. Bull. Amer. Math. Soc. 69, 752–756 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  10. Katznelson Y.: An introduction to harmonic analysis. 3rd ed. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  11. Kingman J.F.C., Orey S.: Ratio limit theorems for Markov chains. Proc. Amer. Math. Soc. 15, 907–910 (1964)

    MATH  MathSciNet  Google Scholar 

  12. Krengel U., Sucheston L.: Mixing in infinite measure spaces. Z. Wahr. Verw. Geb. 13, 150–164 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  13. Krickeberg, K.: Strong mixing properties of Markov chains with infinite invariant measure. In: 1967 Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, CA, 1965/66), Vol. II, Part 2, Berkeley, CA: Univ. California Press, 1967, pp. 431–446

  14. Lenci M.: Aperiodic Lorentz gas: recurrence and ergodicity. Erg. Th. Dynam. Systs. 23(3), 869–883 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lenci M.: Typicality of recurrence for Lorentz gases. Erg. Th. Dynam. Systs. 26(3), 799–820 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lenci, M.: Mixing properties of infinite Lorentz gases. In preparation

  17. Nowak Z.: Criteria for absolute convergence of multiple Fourier series. Ark. Mat. 22(1), 25–32 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Orey S.: Strong ratio limit property. Bull. Amer. Math. Soc. 67, 571–574 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  19. Papangelou F.: Strong ratio limits, R-recurrence and mixing properties of discrete parameter Markov processes. Z. Wahr. Verw. Geb. 8, 259–297 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pruitt W.E.: Strong ratio limit property for R-recurrent Markov chains. Proc. Amer. Math. Soc. 16, 196–200 (1965)

    MATH  MathSciNet  Google Scholar 

  21. Rudin, W.: Fourier analysis on groups. Interscience Tracts in Pure and Applied Mathematics, no. 12, New York-London: Interscience Publishers (a division of John Wiley and Sons), 1962

  22. Sachdeva U.: On category of mixing in infinite measure spaces. Math. Systems Theory 5, 319–330 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sinai Ya.G.: Dynamical systems with elastic reflections. Russ. Math. Surv. 25(2), 137–189 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  24. Spitzer, F.: Principles of random walk, 2nd ed. Graduate Texts in Mathematics, 34. New York-Heidelberg: Springer-Verlag, 1976

  25. Sucheston L.: On mixing and the zero-one law. J. Math. Anal. Appl. 6, 447–456 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  26. Thaler M.: The asymptotics of the Perron-Frobenius operator of a class of interval maps preserving infinite measures. Studia Math. 143(2), 103–119 (2000)

    MATH  MathSciNet  Google Scholar 

  27. Tomatsu S.: Uniformity of mixing transformations with infinite measure. Bull. Fac. Gen. Ed. Gifu Univ. No. 17, 43–49 (1981)

    MathSciNet  Google Scholar 

  28. Tomatsu S.: Local uniformity of mixing transformations with infinite measure. Bull. Fac. Gen. Ed. Gifu Univ. No. 20, 1–5 (1984)

    MathSciNet  Google Scholar 

  29. Walters, P.: An introduction to ergodic theory. Graduate Texts in Mathematics, 79. New York-Berlin: Springer-Verlag, 1982

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Lenci.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenci, M. On Infinite-Volume Mixing. Commun. Math. Phys. 298, 485–514 (2010). https://doi.org/10.1007/s00220-010-1043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1043-6

Keywords

Navigation