Skip to main content
Log in

Proof of the Projective Lichnerowicz Conjecture for Pseudo-Riemannian Metrics with Degree of Mobility Greater than Two

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Degree of mobility of a (pseudo-Riemannian) metric is the dimension of the space of metrics geodesically equivalent to it. We prove that complete metrics on (n≥ 3)−dimensional manifolds with degree of mobility ≥ 3 do not admit complete metrics that are geodesically equivalent to them, but not affinely equivalent to them. As the main application we prove an important special case of the pseudo-Riemannian version of the projective Lichnerowicz conjecture stating that a complete manifold admitting an essential group of projective transformations is the standard round sphere (up to a finite cover and multiplication of the metric by a constant).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky D.V., Cortes V., Galaev A.S., Leistner T.: Cones over pseudo-Riemannian manifolds and their holonomy. J. Reine Angew. Math. (Crelle’s journal) 2009(635), 23–69 (2009)

    Article  MathSciNet  Google Scholar 

  2. Aminova A.V.: Pseudo-Riemannian manifolds with general geodesics. Russ. Math. Surv. 48(2), 105–160 (1993)

    Article  MathSciNet  Google Scholar 

  3. Aminova A.V.: Projective transformations of pseudo-Riemannian manifolds. Geometry, 9. J. Math. Sci. (N. Y.) 113(3), 367–470 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benenti S.: Special symmetric two-tensors, equivalent dynamical systems, cofactor and bi-cofactor systems. Acta Appl. Math. 87(1-3), 33–91 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beltrami E.: Risoluzione del problema: riportare i punti di una superficie sopra un piano in modo che le linee geodetische vengano rappresentante da linee rette. Ann. di Mat. 1(7), 185–204 (1865)

    Google Scholar 

  6. Bolsinov A.V., Matveev V.S.: Geometrical interpretation of Benenti’s systems. J. Geom. Phys. 44, 489–506 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Bolsinov, A.V., Matveev, V.S., Pucacco, G.: Dini theorem for pseudo-Riemannian metrics. Appendix to [58], to appear in Math. Ann., http://arxiv.org/abs/0802.2346v1 [math.DG], 2008

  8. Bolsinov A.V., Matveev V.S., Pucacco G.: Normal forms for pseudo-Riemannian 2-dimensional metrics whose geodesic flows admit integrals quadratic in momenta. J. Geom. Phys. 59(7), 1048–1062 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Bolsinov A.V., Kiosak V., Matveev V.S.: A Fubini theorem for pseudo-Riemannian geodesically equivalent metrics. J. London Math. Soc. 80(2), 341–356 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bolsinov, A.V., Matveev, V.S.: Splitting and gluing lemmas for geodesically equivalent pseudo-Riemannian metrics to appear Trans. Am. Math. Soc. http://arxiv.org/abs/0904.0535v1 [math.DG], 2009

  11. Bryant R.L., Manno G., Matveev V.S.: A solution of a problem of Sophus Lie: Normal forms of 2-dim metrics admitting two projective vector fields. Math. Ann. 340(2), 437–463 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dini U.: Sopra un problema che si presenta nella theoria generale delle rappresetazioni geografice di una superficie su un’altra. Ann. Mat., ser. 2 3, 269–293 (1869)

    Article  Google Scholar 

  13. Eastwood, M.: Notes on projective differential geometry. In: Symmetries and Overdetermined Systems of Partial Differential Equations (Minneapolis, MN, 2006), IMA Vol. Math. Appl. 144, New York: Springer, (2007), pp. 41–61

  14. Eastwood, M., Matveev, V.S.: Metric connections in projective differential geometry. In: Symmetries and Overdetermined Systems of Partial Differential Equations (Minneapolis, MN, 2006), 339–351, IMA Vol. Math. Appl. 144, New York: Springer, 2007, pp. 339–351

  15. Eisenhart, L.P.: Non-Riemannian Geometry. American Mathematical Society Colloquium Publications VIII) NewYork: Dover, 1927

  16. Ehlers, J., Pirani, F., Schild, A.: The geometry of free fall and light propagation. In: “General relativity” (papers in honour of J. L. Synge). Oxford: Clarendon Press, (1972). pp. 63–84

  17. Ehlers J., Schild A.: Geometry in a manifold with projective structure. Commun. Math. Phys. 32, 119–146 (1973)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Fubini G.: Sui gruppi transformazioni geodetiche. Mem. Acc. Torino 53, 261–313 (1903)

    Google Scholar 

  19. Gallot S.: Équations différentielles caractéristiques de la sphère. Ann. Sci. École Norm. Sup. (4) 12(2), 235–267 (1979)

    MathSciNet  Google Scholar 

  20. Hall G.S., Lonie D.P.: Projective collineations in spacetimes. Class. Quant. Grav. 12(4), 1007–1020 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Hall G.S.: Some remarks on symmetries and transformation groups in general relativity. Gen. Rel. Grav. 30(7), 1099–1110 (1998)

    Article  MATH  ADS  Google Scholar 

  22. Hall G.S.: Projective symmetry in FRW spacetimes. Class. Quant. Grav. 17(22), 4637–4644 (2000)

    Article  MATH  ADS  Google Scholar 

  23. Hall, G.S.: Symmetries and curvature structure in general relativity. World Scientific Lecture Notes in Physics 46. River Edge, NJ: World Scientific Publishing Co., Inc., 2004

  24. Hall G.S., Lonie D.P.: The principle of equivalence and projective structure in spacetimes. Class. Quant. Grav. 24(14), 3617–3636 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Hall G.S., Lonie D.P.: The principle of equivalence and cosmological metrics. J. Math. Phys. 49(2), 022502 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  26. Hasegawa I., Yamauchi K.: Infinitesimal projective transformations on tangent bundles with lift connections. Sci. Math. Jpn. 57(3), 469–483 (2003)

    MATH  MathSciNet  Google Scholar 

  27. Hiramatu H.: Riemannian manifolds admitting a projective vector field. Kodai Math. J. 3(3), 397–406 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  28. Igarashi M., Kiyohara K., Sugahara K.: Noncompact Liouville surfaces. J. Math. Soc. Japan 45(3), 459–479 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kim S.: Volume and projective equivalence between Riemannian manifolds. Ann. Global Anal. Geom. 27(1), 47–52 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kiosak V., Matveev V.S.: Complete Einstein metrics are geodesically rigid. Commun. Math. Phys. 289(1), 383–400 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Kiosak V., Matveev V.S.: There are no conformal Einstein rescalings of complete pseudo-Riemannian Einstein metrics. C. R. Acad. Sci. Paris, Ser. I 347, 1067–1069 (2009)

    MATH  MathSciNet  Google Scholar 

  32. Koenigs, G.: Sur les géodesiques a intégrales quadratiques. Note II from “Lecons sur la théorie générale des surfaces,” Vol. 4, New York: Chelsea Publishing, 1896

  33. Kruglikov B.S., Matveev V.S.: Strictly non-proportional geodesically equivalent metrics have h top(g) =  0. Erg. Th. Dyn. Syst. 26(1), 247–266 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kruglikov B.S., Matveev V.S.: Vanishing of the entropy pseudonorm for certain integrable systems. Electron. Res. Announc. Amer. Math. Soc. 12, 19–28 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lagrange, J.-L.: Sur la construction des cartes géographiques. Novéaux Mémoires de l’Académie des Sciences et Bell-Lettres de Berlin, 1779

  36. Levi-Civita T.: Sulle trasformazioni delle equazioni dinamiche. Ann. di Mat., serie 2a 24, 255–300 (1896)

    Article  Google Scholar 

  37. Liouville R.: Sur les invariants de certaines équations différentielles et sur leurs applications. Journal de l’École Polytechnique 59, 7–76 (1889)

    Google Scholar 

  38. Manno, G., Matveev, V.S.: 2-dim metrics admitting two projective vector fields near the points where the vector fields are linearly dependent. In preparation

  39. Matveev V.S., Topalov P.J.: Trajectory equivalence and corresponding integrals. Reg. and Chaotic Dyn. 3(2), 30–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  40. Matveev V.S., Topalov P.J.: Geodesic equivalence of metrics on surfaces, and their integrability. Dokl. Math. 60(1), 112–114 (1999)

    Google Scholar 

  41. Matveev V.S., Topalov P.J.: Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. ERA-AMS 6, 98–104 (2000)

    MATH  MathSciNet  Google Scholar 

  42. Matveev V.S., Topalov P.J.: Quantum integrability for the Beltrami-Laplace operator as geodesic equivalence. Math. Z. 238, 833–866 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  43. Matveev V.S., Topalov P.J.: Integrability in theory of geodesically equivalent metrics. J. Phys. A. 34, 2415–2433 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Matveev V.S.: Geschlossene hyperbolische 3-Mannigfaltigkeiten sind geodätisch starr. Manuscripta Math. 105(3), 343–352 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  45. Matveev, V.S.: Low-dimensional manifolds admitting metrics with the same geodesics. In: Contemporary Mathematics, Providence, RI: Amer. Math. Soc., 308 2002, pp. 229–243

  46. Matveev V.S.: Three-dimensional manifolds having metrics with the same geodesics. Topology 42(6), 1371–1395 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  47. Matveev V.S.: Hyperbolic manifolds are geodesically rigid. Invent. Math. 151, 579–609 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  48. Matveev V.S.: Die Vermutung von Obata für Dimension 2. Arch. Math. 82, 273–281 (2004)

    Article  MATH  Google Scholar 

  49. Matveev V.S.: Projectively equivalent metrics on the torus. Diff. Geom. Appl. 20, 251–265 (2004)

    Article  MATH  Google Scholar 

  50. Matveev V.S.: Solodovnikov’s theorem in dimension two. Dokl. Math. 69(3), 338–341 (2004)

    MATH  Google Scholar 

  51. Matveev V.S.: Lichnerowicz-Obata conjecture in dimension two. Commun. Math. Helv. 81(3), 541–570 (2005)

    Article  Google Scholar 

  52. Matveev, V.S.: Closed manifolds admitting metrics with the same geodesics. Proceedings of SPT2004 (Cala Gonone). River Edge, NJ: World Scientific, 2005, pp. 198–209

  53. Matveev V.S.: Beltrami problem, Lichnerowicz-Obata conjecture and applications of integrable systems in differential geometry. Tr. Semin. Vektorn. Tenzorn. Anal 26, 214–238 (2005)

    MATH  Google Scholar 

  54. Matveev V.S.: The eigenvalues of Sinjukov’s operator are globally ordered. Mathematical Notes 77(3–4), 380–390 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  55. Matveev V.S.: Geometric explanation of Beltrami theorem. Int. J. Geom. Methods Mod. Phys. 3(3), 623–629 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  56. Matveev V.S.: On degree of mobility of complete metrics. Adv. Stud. Pure Math. 43, 221–250 (2006)

    Google Scholar 

  57. Matveev V.S.: Proof of projective Lichnerowicz-Obata conjecture. J. Diff. Geom. 75, 459–502 (2007)

    MATH  Google Scholar 

  58. Matveev, V.S.: Two-dimensional metrics admitting precisely one projective vector field. Math. Ann., accepted, http://arxiv.org/abs/0802.2344v2 [math.DG], 2010

  59. Matveev V.S.: Gallot-Tanno theorem for pseudo-Riemannian metrics and a proof that decomposable cones over closed complete pseudo-Riemannian manifolds do not exist. J. Diff. Geom. and Its Appl. 28(2), 236–240 (2010)

    Article  MATH  Google Scholar 

  60. Matveev, V.S., Mounoud, P.: Gallot-Tanno Theorem for closed incomplete pseudo-Riemannian manifolds and applications. Ann. Glob. Anal. Geom. doi:10.1007/s10455-010-9211-7 (2010)

  61. Matveev, V.S.: Pseudo-Riemannian metrics on closed surfaces whose geodesic flows admit nontrivial integrals quadratic in momenta, and proof of the projective Obata conjecture for two-dimensional pseudo-Riemannian metrics, http://arxiv.org/abs/1002.3934 [math.DG], 2010

  62. Mikes J.: Geodesic mappings of affine-connected and Riemannian spaces. Geometry, 2. J. Math. Sci. 78(3), 311–333 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  63. Nagano T., Ochiai T.: On compact Riemannian manifolds admitting essential projective transformations. J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 33, 233–246 (1986)

    MATH  MathSciNet  Google Scholar 

  64. Obata, M.: Riemannian manifolds admitting a solution of a certain system of differential equations. Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965), Tokyo: Nippon Hyoronsha, 1966, pp. 101–114

  65. Painlevé P.: Sur les intégrale quadratiques des équations de la Dynamique. Compt.Rend. 124, 221–224 (1897)

    Google Scholar 

  66. Petrov, A.Z.: Einstein spaces. London: Pergamon Press. XIII, 1969

  67. Petrov, A.Z.: New methods in the general theory of relativity. (in Russian). Moscow: Izdat. “Nauka”, 1966

  68. Shen Z.: On projectively related Einstein metrics in Riemann-Finsler geometry. Math. Ann. 320(4), 625–647 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  69. Sinjukov, N.S.: Geodesic mappings of Riemannian spaces (in Russian). Moscow: “Nauka”, 1979

  70. Solodovnikov, A.S.: Projective transformations of Riemannian spaces. Uspehi Mat. Nauk (N.S.) 11, no. 4(70), 45–116 (1956)

  71. Solodovnikov A.S.: Geometric description of all possible representations of a Riemannian metric in Levi-Civita form. Trudy Sem. Vektor. Tenzor. Anal. 12, 131–173 (1963)

    MathSciNet  Google Scholar 

  72. Tanno S.: Some differential equations on Riemannian manifolds. J. Math. Soc. Japan 30(3), 509–531 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  73. Topalov P.: Geodesic hierarchies and involutivity. J. Math. Phys. 42(8), 3898–3914 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  74. Topalov P.J., Matveev V.S.: Geodesic equivalence via integrability. Geometriae Dedicata 96, 91–115 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  75. Weyl, H.: Zur Infinitisimalgeometrie: Einordnung der projektiven und der konformen Auffasung. Nachrichten von der K. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1921; “Selecta Hermann Weyl”, Basel Stuttgart: Birkhäuser Verlag, 1956

  76. Weyl, H.: Geometrie und Physik. Die Naturwissenschaftler 19, 49–58 (1931); “Hermann Weyl Gesammelte Abhandlungen”, Band 3, Berlin-Heidelberg: Springer-Verlag, 1968

  77. Yamauchi K.: On infinitesimal projective transformations. Hokkaido Math. J. 3, 262–270 (1974)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir S. Matveev.

Additional information

Communicated by P.T. Chruściel

Partially supported by DFG (SPP 1154).

Partially supported by DFG (SPP 1154 and GK 1523).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiosak, V., Matveev, V.S. Proof of the Projective Lichnerowicz Conjecture for Pseudo-Riemannian Metrics with Degree of Mobility Greater than Two. Commun. Math. Phys. 297, 401–426 (2010). https://doi.org/10.1007/s00220-010-1037-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1037-4

Keywords

Navigation