Skip to main content
Log in

Ionization of Coulomb Systems in \({\mathbb{R}^3}\) by Time Periodic Forcings of Arbitrary Size

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We analyze the long time behavior of solutions of the Schrödinger equation \({i\psi_t=(-\Delta-b/r+V(t,x))\psi}\), \({x\in\mathbb{R}^3}\), r =  |x|, describing a Coulomb system subjected to a spatially compactly supported time periodic potential V(t, x) =  V(t +  2π/ω, x) with zero time average.

We show that, for any V(t, x) of the form \({2\Omega(r) \sin (\omega t-\theta)}\), with Ω(r) nonzero on its support, Floquet bound states do not exist. This implies that the system ionizes, i.e. \({P(t, K) = \int_K|\psi(t,x)|^2dx\to 0}\) as t → ∞ for any compact set \({K\subset\mathbb{R}^3}\). Furthermore, if the initial state is compactly supported and has only finitely many spherical harmonic modes, then P(t, K) decays like \({t^{-5/3}}\) as t → ∞.

To prove these statements, we develop a rigorous WKB theory for infinite systems of ordinary differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Wiley-Interscience, 1984

  2. Agmon S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola. Norm. Sup. Pisa, Ser. IV 2, 151–218 (1975)

    MATH  MathSciNet  Google Scholar 

  3. Agmon S.: Analyticity properties in scattering and spectral theory for schrodinger operators with long-range radial potentials. Duke Math. J. 68(2), 337–399 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Belissard, J.: Stability and instability in quantum mechanics. In: Trends and Developments in the Eighties, Albeverio, S., Blanchard, Ph. (eds.) Singapore: World Scientific, 1985, pp. 1–106

  5. Bourgain, J.: On long-time behaviour of solutions of linear Schrödinger equations with smooth time-dependent potential. In: Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1807, Berlin: Springer, 2003, pp. 99–113

  6. Bourgain J.: Growth of Sobolev norms in linear Schrödinger equatios with quasi-periodic potential. Commun. Math. Phys. 204(1), 207–240 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Bourgain J.: On growth of Sobolev norms in linear Schrödinger equations with smooth time-dependent potential. J. Anal Math. 77, 315–348 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bourgain J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal 3(2), 107–156 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Buchholz, H.: The Confluent Hypergeometric Function. Berlin-Heidelberg-NewYork: Springer-Verlag, 1969

  10. Costin, O., Costin, R.D., Lebowitz, J.L.: Transition to the Continuum of a Particle in Time-Periodic Potentials, Advances in Differential Equations and Mathematical Physics, AMS Contemporary Mathematics 327 ed. Karpeshina, Yu., Stolz, C., Weikard, R., Zeng, Y. Providence, RI: Amer. Math. Soc., 2003, pp. 75–86

  11. Costin O., Lebowitz J.L., Rokhlenko A.: Exact results for the ionization of a model quantum system. J. Phys. A: Math. Gen. 33, 1–9 (2000)

    Article  MathSciNet  Google Scholar 

  12. Costin O., Costin R.D., Lebowitz J.L., Rokhlenko A.: Evolution of a model quantum system under time periodic forcing: conditions for complete ionization. Commun. Math. Phys. 221(1), 1–26 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Costin, O., Rokhlenko, A., Lebowitz, J.L.: On the Complete Ionization of a Periodically Perturbed Quantum System. CRM Proceedings and Lecture Notes 27, Providence, RI: Amer. Math. Soc., 2001, pp. 51–61

  14. Costin O., Soffer A.: Resonance theory for Schrödinger operators. Commun. Math. Phys. 224, 133–152 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Costin O., Costin R.D., Lebowitz J.L.: Time asymptotics of the Schrödinger wave function in time-periodic potentials. J. Stat. Phys. 116(1–4), 283–310 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Costin O., Lebowitz J.L., Stucchio C.: Ionization in a one-dimensional dipole model. Rev. Math. Phys. 7, 835–872 (2008)

    Article  MathSciNet  Google Scholar 

  17. Treves F.: Basic Linear Partial Differential Equations. Academic Press, London-New York (1975)

    MATH  Google Scholar 

  18. Costin O., Lebowitz J.L., Stucchio C., Tanveer S.: Exact results for ionization of model atomic systems. J. Math Phys. 51, 015211 (2010)

    Article  ADS  Google Scholar 

  19. Cycon H.L., Froese R.G., Kirsch W., Simon B.: Schrödinger Operators. Springer-Verlag, Berlin-Heidelberg-NewYork (1987)

    MATH  Google Scholar 

  20. Galtbayar A., Jensen A., Yajima K.: Local time-decay of solutions to Schrödinger equations with time-periodic potentials. J. Stat. Phys. 116(1–4), 231–282 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Goldberg M.: Strichartz estimates for the Schrödinger equation with time-periodic Ln/2 potentials. J. Funct. Anal. 256(3), 718–746 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hislop, P.D., Sigal, I.M.: Introduction to Spectral Theory with Applications to Schrödinger Operators. Applied Mathematical Sciences 113, Berlin-Heidelberg-NewYork: Springer, 1996

  23. Hörmander L.: Linear Partial Differential Operators. Springer, Berlin-Heidelberg-NewYork (1963)

    MATH  Google Scholar 

  24. Howland J.S.: Stationary scattering theory for time dependent Hamiltonians. Math. Ann. 207, 315–335 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jauslin H.R., Lebowitz J.L.: Spectral and stability aspects of quantum Chaos. Chaos 1, 114–121 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Hostler L., Pratt R.H.: Coulomb’s Green’s function in closed form. Phys. Rev. Lett. 10(11), 469–470 (1963)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Jensen A.: High energy resolvent estimates for generalized many-body Schrodinger operators. Publ. RIMS, Kyoto U. 25, 155–167 (1989)

    Article  MATH  Google Scholar 

  28. Kato T.: Perturbation Theory for Linear Operators. Springer Verlag, Berlin-Heidelberg-NewYork (1995)

    MATH  Google Scholar 

  29. Koch P.M., van Leeuven K.A.H.: The importance of resonances in microwave “Ionization” of excited hydrogen atoms. Phys. Repts. 255, 289–403 (1995)

    Article  ADS  Google Scholar 

  30. Miller P.D., Soffer A., Weinstein M.I.: Metastability of breather modes of time dependent potentials. Nonlinearity 13, 507–568 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Reed M., Simon B.: Methods of Modern Mathematical Physics. Academic Press, New York (1972)

    MATH  Google Scholar 

  32. Möller J.S., Skibsted E.: Spectral theory of time-periodic many-body systems. Adv. Math. 188(1), 137–221 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Möller J.S.: Two-body short-range systems in a time-periodic electric field. Duke Math. J. 105(1), 135–166 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rodnianski, I., Tao, T.: Long-time Decay Estimates for Schrödinger Equations on Manifolds. Ann. of Math. Stud. 163, Princeton, NJ: Princeton Univ. Press, 2007

  35. Rokhlenko A., Costin O., Lebowitz J.L.: Decay versus survival of a local state subjected to harmonic forcing: exact results. J. Phys. A: Mathematical and General 35, 8943 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Schlag W., Rodnianski I.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math 3, 451–513 (2004)

    MathSciNet  Google Scholar 

  37. Herbst I., Möller J.S., Skibsted E.: Asymptotic completeness for N-body Stark Hamiltonians. Commun. Math. Phys. 174(3), 509–535 (1996)

    Article  MATH  ADS  Google Scholar 

  38. Merzbacher E.: Quantum Mechanics, 3rd ed. Wiley, New York (1998)

    Google Scholar 

  39. Simon B.: Schrödinger operators in the twentieth century. J. Math. Phys. 41, 3523 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Slater L.J.: Confluent hypergeometric functions. Cambridge University Press, Cambridge (1960)

    MATH  Google Scholar 

  41. Soffer A., Weinstein M.I.: Nonautonomous Hamiltonians. J. Stat. Phys. 93, 359–391 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Wasow W.: Asymptotic Expansions for Ordinary Differential Equations. Interscience Publishers, New York (1968)

    MATH  Google Scholar 

  43. Yajima K. Resonances for the AC-Stark effect. Commun. Math. Phys. 87(3), 331–352 (1982/83)

    Google Scholar 

  44. Graffi S., Yajima K.: Exterior complex scaling and the AC-Stark effect in a Coulomb field. Commun. Math. Phys. 89(2), 277–301 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Yajima K.: Scattering theory for Schrödinger equations with potentials periodic in time. J. Math. Soc. Japan 29, 729 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  46. Yajima K.: Existence of solutions of Schrödinger evolution equations. Commun. Math. Phys. 110, 415 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Costin.

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costin, O., Lebowitz, J.L. & Tanveer, S. Ionization of Coulomb Systems in \({\mathbb{R}^3}\) by Time Periodic Forcings of Arbitrary Size. Commun. Math. Phys. 296, 681–738 (2010). https://doi.org/10.1007/s00220-010-1023-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1023-x

Keywords

Navigation