Skip to main content
Log in

Random Quantum Channels I: Graphical Calculus and the Bell State Phenomenon

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper is the first of a series where we study quantum channels from the random matrix point of view. We develop a graphical tool that allows us to compute the expected moments of the output of a random quantum channel.

As an application, we study variations of random matrix models introduced by Hayden [7], and show that their eigenvalues converge almost surely.

In particular we obtain, for some models, sharp improvements on the value of the largest eigenvalue, and this is shown in further work to have new applications to minimal output entropy inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coecke, B.: Kindergarten quantum mechanics—lecture notes. In: Quantum Theory: Reconsideration of Foundations—3, AIP Conf. Proc. 810, Melville, NY: Amer. Inst. Phys., 2006, pp. 81–98

  2. Collins B.: Moments and Cumulants of Polynomial random variables on unitary groups, the Itzykson-Zuber integral and free probability. Int. Math. Res. Not. 17, 953–982 (2003)

    Article  Google Scholar 

  3. Collins, B., Nechita, I.: Random quantum channels II: Entanglement of random subspaces, Renyi entropy estimates and additivity problems. http://arxiv.org/abs/0906.1877v2[math.PR], 2009

  4. Collins, B., Nechita, I.: Gaussianization and eigenvalue statistics for Random quantum channels (III) http://arxiv.org/abs/0910.1768v2[quant-ph], 2009

  5. Collins B., Śniady P.: Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Commun. Math. Phys. 264(3), 773–795 (2006)

    Article  MATH  ADS  Google Scholar 

  6. Hastings M.B.: Superadditivity of communication capacity using entangled inputs. Nature Physics 5, 255–257 (2009)

    Article  ADS  Google Scholar 

  7. Hayden, P.: The maximal p-norm multiplicativity conjecture is false. http://arxiv.org/abs/0707.3291v1[quant-ph], 2007

  8. Hayden P., Leung D., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265, 95–117 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Hayden P., Winter A.: Counterexamples to the maximal p-norm multiplicativity conjecture for all p > 1. Commun. Math. Phys. 284(1), 263–280 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Jones, V.F.R.: Planar Algebras. http://arxiv.org/abs/math/9909027v1[math.QA], 1999

  11. Joyal A., Street R., Verity D.: Traced monoidal categories. Math. Proc. Cambridge Philos. Soc. 119(3), 447–468 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Nechita I.: Asymptotics of random density matrices. Ann. Henri Poincaré 8(8), 1521–1538 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. Volume 335 of London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ion Nechita.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, B., Nechita, I. Random Quantum Channels I: Graphical Calculus and the Bell State Phenomenon. Commun. Math. Phys. 297, 345–370 (2010). https://doi.org/10.1007/s00220-010-1012-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1012-0

Keywords

Navigation