Skip to main content
Log in

Continuity of the von Neumann Entropy

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A general method for proving continuity of the von Neumann entropy on subsets of positive trace-class operators is considered. This makes it possible to re-derive the known conditions for continuity of the entropy in more general forms and to obtain several new conditions. The method is based on a particular approximation of the von Neumann entropy by an increasing sequence of concave continuous unitary invariant functions defined using decompositions into finite rank operators. The existence of this approximation is a corollary of a general property of the set of quantum states as a convex topological space called the strong stability property. This is considered in the first part of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti P.M., Uhlmann A.: Stochasticity and Partial Order. Doubly Stochastic Maps and Unitary Mixing. VEB Deutscher Verlag Wiss., Berlin (1981)

    MATH  Google Scholar 

  2. Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bratteli O., Robinson D.W.: Operators Algebras and Quantum Statistical Mechanics. vol. I. Springer Verlag, New York-Heidelberg-Berlin (1979)

    Google Scholar 

  4. O’Brien R.: On the openness of the barycentre map. Math. Ann. 223(3), 207–212 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  5. Clausing A., Papadopoulou S.: Stable convex sets and extremal operators. Math. Ann. 231, 193–203 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dell’Antonio G.F.: On the limits of sequences of normal states. Commun. Pure Appl. Math. 20, 413–430 (1967)

    MathSciNet  Google Scholar 

  7. Edgar, G.A.: On the Radon-Nikodim Property and Martingale Convergence. Lecture Notes in Mathematics 645, Berlin-Heidelberg: Springer, 1978, pp. 62–76

  8. Grzaslewicz R.: Extreme continuous function property. Acta. Math. Hungar. 74, 93–99 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Holevo A.S.: On quasi-equivalence of locally normal states. Theor. Math. Phys. 13(2), 184–199 (1972)

    MATH  MathSciNet  Google Scholar 

  10. Holevo A.S.: Statistical Structure of Quantum Theory. Springer-Verlag, Berlin-Heidelberg-New York (2001)

    MATH  Google Scholar 

  11. Holevo A.S., Shirokov M.E.: Continuous ensembles and the χ-capacity of infinite dimensional channels. Theor. Prob. and Appl. 50(1), 8698 (2005)

    Google Scholar 

  12. Joffe A.D., Tikhomirov W.M.: Theory of Extremum Problems. Academic Press, New York (1979)

    Google Scholar 

  13. Lindblad G.: Expectation and entropy inequalities for finite quantum systems. Commun. Math. Phys. 39(2), 111–119 (1974)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  15. Ohya M., Petz D.: Quantum Entropy and Its Use. Texts and Monographs in Physics. Springer-Verlag, Berlin (1993)

    Google Scholar 

  16. Ozawa M.: On information gain by quantum measurement of continuous observable. J. Math. Phys. 27, 759–763 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  17. Owari M., Braunstein S.L., Nemoto K., Murao M.: \({\varepsilon}\) -convertibility of entangled states and extension of Schmidt rank in infinite-dimensional systems. Quant. Inf. Comp. 8(1–2), 0030–0052 (2008)

    MathSciNet  Google Scholar 

  18. Papadopoulou S.: On the geometry of stable compact convex sets. Math. Ann. 229, 193–200 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  19. Parthasarathy K.: Probability Measures on Metric Spaces. Academic Press, New York-London (1967)

    MATH  Google Scholar 

  20. Protasov V.Yu., Shirokov M.E.: Generalized compactness in linear spaces and its applications. Sbornik: Math. 200(5), 697–722 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Plenio M.B., Virmani S.: An introduction to entanglement measures. Quant. Inf. Comp. 7, 1 (2007)

    MATH  MathSciNet  Google Scholar 

  22. Rockafellar R.: Convex Analysis. Princeton Univ. Press, Princeton, NJ (1970)

    MATH  Google Scholar 

  23. Shirokov M.E.: The Holevo capacity of infinite dimensional channels and the additivity problem. Commun. Math. Phys. 262, 137–159 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Shirokov M.E.: Entropic characteristics of subsets of states-I. Izvestiya: Math. 70(6), 1265–1292 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Shirokov M.E.: On properties of the space of quantum states and their application to construction of entanglement monotones. Izvestiya: Math., to appear, available at http://arxiv.org/abs/0804.1515v2[math-ph], 2009

  26. Simon, B.: Convergence Theorem for Entropy. Appendix in E.H.Lieb, M.B.Ruskai, Proof of the strong suadditivity of quantum mechanical entropy. J. Math. Phys. 14, 1938 (1973)

    Google Scholar 

  27. Uhlmann A.: Entropy and optimal decomposition of states relative to a maximal commutative subalgebra. Open Syst. Inf. Dyn. 5(3), 209–228 (1998)

    Article  MATH  Google Scholar 

  28. Wagner, D.H.: Survey of Measurable Selection Theorems. Lecture Notes in Mathematics 794, Berlin: Springer, 1980, pp. 176–219

  29. Wehrl A.: General properties of entropy. Rev. Mod. Phys. 50, 221–250 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  30. Wehrl A.: How chaotic is a state of a quantum system. Rep. Math. Phys. 6, 15–28 (1974)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Shirokov.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirokov, M.E. Continuity of the von Neumann Entropy. Commun. Math. Phys. 296, 625–654 (2010). https://doi.org/10.1007/s00220-010-1007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1007-x

Keywords

Navigation