Skip to main content
Log in

Q-Systems, Heaps, Paths and Cluster Positivity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the cluster algebra associated to the Q-system for A r as a tool for relating Q-system solutions to all possible sets of initial data. Considered as a discrete integrable dynamical system, we show that the conserved quantities are partition functions of hard particles on certain weighted graphs determined by the choice of initial data. This allows us to interpret the solutions of the system as partition functions of Viennot’s heaps on these graphs, or as partition functions of weighted paths on dual graphs. The generating functions take the form of finite continued fractions. In this setting, the cluster mutations correspond to local rearrangements of the fractions which leave their final value unchanged. Finally, the general solutions of the Q-system are interpreted as partition functions for strongly non-intersecting families of lattice paths on target lattices. This expresses all cluster variables as manifestly positive Laurent polynomials of any initial data, thus proving the cluster positivity conjecture for the A r Q-system. We also give the relation to domino tilings of deformed Aztec diamonds with defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beals R., Sattinger D.H., Szmigielski J.: Continued fractions and integrable systems. J. Comput. Appl. Math. 153(1-2), 47–60 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Caldero P., Reineke M.: On the quiver Grassmannian in the acyclic case. J. Pure Appl. Algebra 212(11), 2369–2380 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Di Francesco P., Kedem R.: Proof of the combinatorial Kirillov-Reshetikhin conjecture. Int. Math. Res. Notices 2008, rnn006–57 (2008)

    Article  MathSciNet  Google Scholar 

  4. Di Francesco, P., Kedem, R.: Q-systems as cluster algebras II. http://arXiv.org/abs/0803.0362v2[math.RT], 2008

  5. Di Francesco, P., Kedem, R.: Q-systems cluster algebras, paths and total positivity. http://arXiv.org/abs/0906.3421v2[math.CO], 2009

  6. Di Francesco P., Kedem, R.: Positivity of the T-system cluster algebra, preprint

  7. Di Francesco, P., Kedem, R.: In progress

  8. Fomin S., Zelevinsky A.: Total positivity: tests and parameterizations. Math. Intelligencer 22, 23–33 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fomin S., Zelevinsky A.: Cluster algebras I. J. Amer. Math. Soc. 15(2), 497–529 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fomin S., Zelevinsky A.: The Laurent phenomenon. Adv. in Appl. Math. 28(2), 119–144 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gessel I.M., Viennot X.: Binomial determinants, paths and hook formulae. Adv. Math. 58, 300–321 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Henriquès A.: A periodicity theorem for the octahedron recurrence. J. Alg. Comb. 26(1), 1–26 (2007)

    Article  MATH  Google Scholar 

  13. Johansson K.: Non-intersecting paths, random tilings and random matrices. Prob. Th. Rel. fields 123(2), 225–280 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kedem R.: Q-systems as cluster algebras. J. Phys. A: Math. Theor. 41, 194011 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  15. Kirillov A.N., Reshetikhin N.Yu.: Representations of Yangians and multiplicity of occurrence of the irreducible components of the tensor product of representations of simple Lie algebras. J. Sov. Math. 52, 3156–3164 (1990)

    Article  MathSciNet  Google Scholar 

  16. Kontsevich, M.: Private communication

  17. Knutson A., Tao T., Woodward C.: A positive proof of the Littlewood-Richardson rule using the octahedron recurrence. Electr. J. Combin. 11, RP 61 (2004)

    MathSciNet  Google Scholar 

  18. Krattenthaler, C.: The theory of heaps and the Cartier-Foata monoid. Appendix to the electronic republication of Problèmes combinatoires de commutation et réarrangements, by P. Cartier and D. Foata, available at http://mathnet.preprints.org/EMIS/journals/SLC/books/cartfao.pdf

  19. Lindström B.: On the vector representations of induced matroids. Bull. London Math. Soc. 5, 85–90 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  20. Postnikov, A.: Total positivity, Grassmannians, and networks. http://arXiv.org/abs/math/0609764v1[math.CO], 2006

  21. Robbins D., Rumsey H.: Determinants and alternating sign matrices. Adv. in Math. 62, 169–184 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Speyer D.: Perfect matchings and the octahedron recurrence. J. Alg. Comb. 25(3), 309–348 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Stieltjes, T.J.: Recherches sur les fractions continues. In: Oeuvres complètes de Thomas Jan Stieltjes. Vol. II, No. LXXXI, Groningen: P. Nordhoff, 1918 pp. 402–566 (see in particular Eq. (1), p 402 and Eq. (7) p 427)

  24. Viennot, X.: Heaps of pieces I: Basic definitions and combinatorial lemmas. In: Combinatoire énumérative, eds Labelle, G., Leroux, P. Lecture Notes in Math. 1234, Berlin: Springer-Verlag, 1986, pp. 321–325

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinat Kedem.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francesco, P.D., Kedem, R. Q-Systems, Heaps, Paths and Cluster Positivity. Commun. Math. Phys. 293, 727–802 (2010). https://doi.org/10.1007/s00220-009-0947-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0947-5

Keywords

Navigation