Skip to main content
Log in

\({\mathcal{W}}\)-Symmetry of the Adèlic Grassmannian

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a geometric construction of the \({\mathcal{W}_{1+\infty}}\) vertex algebra as the infinitesimal form of a factorization structure on an adèlic Grassmannian. This gives a concise interpretation of the higher symmetries and Bäcklund-Darboux transformations for the KP hierarchy and its multicomponent extensions in terms of a version of “\({\mathcal{W}_{1+\infty}}\)-geometry”: the geometry of \({\mathcal{D}}\)-bundles on smooth curves, or equivalently torsion-free sheaves on cuspidal curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Álvarez, A., Muñoz, J., Plaza, F.: The algebraic formalism of soliton equations over arbitrary base fields. In: Workshop on Abelian Varieties and Theta Functions (Morelia 1996). Aportaciones Mat. Investig. 13, Soc. Mat. Mexicana, Thalpani, Mexico, pp. 3–40, 1998

  2. Arbarello E., De Concini C., Kac V., Procesi C.: Modulî spaces of curves and representation theory. Commun. Math. Phys. 117(1), 1–36 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Bakalov B., Horozov E., Yakimov M.: Bäcklund–Darboux transformations in Sato’s Grassmannian. Serdica Math. J. 22(4), 571–586 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Bakalov B., Horozov E., Yakimov M.: Bispectral algebras of commuting ordinary differential operators. Commun. Math. Phys. 190(2), 331–373 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Bakalov B., Horozov E., Yakimov M.: Highest weight modules over \({\mathcal{W}_{1+\infty}}\) algebra and the bispectral problem. Duke Math. J. 93(1), 41–72 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beilinson A., Bloch S., Esnault H.: \({\epsilon}\)-factors for Gauss-Manin determinants. Moscow Math. J. 2(3), 477–532 (2002)

    MATH  MathSciNet  Google Scholar 

  7. Beilinson, A., Drinfeld, V.: Quantization of Hitchin’s integrable system and Hecke eigensheaves, available at http://www.math.uchicago.edu/~mitya/langlands/hitchin/BD-hitchin.pdf

  8. Beilinson, A., Drinfeld, V.: Chiral Algebras. Providence, RF: Amer. Math. Soc., 2004

  9. Beilinson A., Schechtman V.: Determinant bundles and Virasoro algebras. Commun. Math. Phys. 118(4), 651–701 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Ben-Zvi, D., Frenkel, E.: Geometric realization of the Segal-Sugawara construction. In: Topology, Geometry and Quantum Field Theory. Proc., 2002 Oxford Symposium in Honour of the 60th Birthday of Graeme Segal. LMS Lecture Notes 308, Cambridge: Camb. Univ. Press, 2004, pp. 46–97

  11. Ben-Zvi D., Nevins T.: Cusps and \({\mathcal{D}}\)–modules. J. Amer. Math. Soc. 17(1), 155–179 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ben-Zvi, D., Nevins, T.: \({\mathcal{D}}\) -bundles and integrable hierarchies, http://arXiv.org/abs/math/0603720v1[math.AG], 2006

  13. Ben-Zvi D., Nevins T.: Perverse bundles and Calogero-Moser spaces. Compositio Math. 144(6), 1403–1428 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Berest Y., Wilson G.: Automorphisms and ideals of the Weyl algebra. Math. Ann. 318, 127–147 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Berest Y., Wilson G.: Ideal classes of the Weyl algebra and noncommutative projective geometry, with an appendix by Michel Van den Bergh. Int. Math. Res. Not. 2, 1347–1396 (2002)

    Article  MathSciNet  Google Scholar 

  16. Cannings R., Holland M.: Right ideals of rings of differential operators. J. Algebra 167, 116–141 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cannings R., Holland M.: Limits of compactified Jacobians and \({\mathcal{D}}\)–modules on smooth projective curves. Adv. Math. 135, 287–302 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation Groups for Soliton Equations. Nonlinear integrable systems— classical theory and quantum theory (Kyoto, 1981), Singapore: World Sci. Publishing, 1983, pp. 39–119

  19. Date, E., Jimbo, M., Miwa, T.: Solitons. Differential Equations, Symmetries and Infinite-dimensional Algebras. Translated from the 1993 Japanese original by Miles Reid. Cambridge Tracts in Mathematics 135. Cambridge: Cambridge University Press, 2000

  20. Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves. Second edition. Mathematical Surveys and Monographs 88. Providence, RI: Amer. Math. Soc., 2004

  21. Gaitsgory, D.: Notes on 2D conformal field theory and string theory. In: Quantum Field Theory for Mathematicians, P. Deligne et al. eds., Vol. 2, 1017–1089, available at http://arXiv.org/abs/math/9811061v2[math.AG], 1998

  22. Helminck G., van de Leur J.: Geometric Bäcklund-Darboux transformations for the KP hierarchy. Publ. Res. Inst. Math. Sci. 37(4), 479–519 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hull C.: \({\mathcal{W}}\)-geometry. Commun. Math. Phys. 156(2), 245–275 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Kac, V.: Vertex Algebras for Beginners. Second edition. University Lecture Series 10. Providence, RI: Amer. Math. Soc., 1998

  25. Kac V., van de Leur J.: The n-component KP hierarchy and representation theory. Integrability, topological solitons and beyond. J. Math. Phys. 44(8), 3245–3293 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Kapranov M., Vasserot E.: Vertex algebras and the formal loop space. Publ. Math. IHES 100, 209–269 (2004)

    MATH  MathSciNet  Google Scholar 

  27. Kawamoto N., Namikawa Y., Tsuchiya A., Yamada Y.: Geometric realization of conformal field theory on Riemann surfaces. Commun. Math. Phys. 116(2), 247–308 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Kontsevich M.: The Virasoro algebra and Teichmüller spaces. (Russian). Funkt. Anal. i Pril. 21(2), 78–79 (1987)

    MathSciNet  Google Scholar 

  29. Levin, A., Olshanetsky, M.: Lie Algebroids and generalized projective structures on Riemann surfaces. http://arXiv.org/abs/0712.3828v1[math.QA], 2007

  30. Levin, A., Olshanetsky, M., Zotov, A.: Hitchin systems - symplectic Hecke correspondence and two-dimensional version. http://arXiv.org/abs/nlin/0110045v3[nlin.SI], 2002

  31. Muñoz Porras J., Plaza Martın F.: Automorphism group of k((t)): applications to the bosonic string. Commun. Math. Phys. 216(3), 609–634 (2001)

    Article  MATH  ADS  Google Scholar 

  32. Mulase, M.: Algebraic theory of the KP equations. In: Perspectives in Mathematical Physics, Conf. Proc. Lect. Notes Math. Phys. III Cambridge, MA: Intl. Press, pp. 151–217, 1994

  33. Palais R.: The symmetries of solitons. Bull. Amer. Math. Soc. (N.S.) 34(4), 339–403 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  34. Plaza Martin F.: Algebraic solutions of the multicomponent KP hierarchy. J. Geom. Phys. 36(1–2), 1–21 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Pope, C.: Lectures on W algebras and W gravity. http://arXiv.org/abs/hep-th/9112076v1, 1991

  36. Sato, M.: The KP hierarchy and infinite-dimensional Grassmann manifolds. In: Theta functions—Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math. 49, Part 1, Providence, RI: Amer. Math. Soc., 1989. pp. 51–66

  37. Segal G., Wilson G.: Loop groups and equations of KdV type. Inst. Hautes Études Sci. Publ. Math. 61, 5–65 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  38. Smith S.P., Stafford J.T.: Differential operators on an affine curve. Proc. London Math. Soc. (3) 56, 229–259 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  39. Takhtajan, L.: Quantum field theories on Algebraic curves and A. Weil reciprocity law. http://arXiv.org/abs/0812.0169v2[math.AG], 2009

  40. Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal Field Theory on Universal Family of Stable Curves with Gauge Symmetries. Integrable systems in quantum field theory and statistical mechanics, Adv. Stud. Pure Math. 19, Boston, MA: Academic Press, 1989, pp. 459–566

  41. Ueno, K.: On Conformal Field Theory. Vector Bundles in Algebraic Geometry (Durham, 1993), London Math. Soc. Lecture Note Ser. 208, Cambridge: Cambridge Univ. Press, 1995, pp. 283–345

  42. van de Leur J.: The \({\mathcal{W}_{1+\infty}(\mathfrak{gl}_S)}\)–symmetries of the S–component KP hierarchy. J. Math. Phys. 37(5), 2315–2337 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. van Moerbeke, P.: Algèbres \({\mathcal{W}}\) et équations non-linéaires. Séminaire Bourbaki. Vol. 1997/98. Astérisque No. 252, Exp. No. 839, 3, 105–129 (1998)

  44. Wilson G.: Bispectral commutative ordinary differential operators. J. reine angew. Math. 442, 177–204 (1993)

    MATH  MathSciNet  Google Scholar 

  45. Wilson G.: Collisions of Calogero-Moser particles and an adelic Grassmannian. Invent. Math. 133, 1–41 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. Witten E.: Quantum field theory, Grassmannians, and algebraic curves. Commun. Math. Phys. 113(4), 529–600 (1988)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ben-Zvi.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Zvi, D., Nevins, T. \({\mathcal{W}}\)-Symmetry of the Adèlic Grassmannian. Commun. Math. Phys. 293, 185–204 (2010). https://doi.org/10.1007/s00220-009-0925-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0925-y

Keywords

Navigation