Skip to main content
Log in

The Two-Dimensional Hubbard Model on the Honeycomb Lattice

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the two-dimensional (2D) Hubbard model on the honeycomb lattice, as a model for a single layer graphene sheet in the presence of screened Coulomb interactions. At half filling and weak enough coupling, we compute the free energy, the ground state energy and we construct the correlation functions up to zero temperature in terms of convergent series; analyticity is proved by making use of constructive fermionic renormalization group methods. We show that the interaction produces a modification of the Fermi velocity and of the wave function renormalization without changing the asymptotic infrared properties of the model with respect to the unperturbed non-interacting case; this rules out the possibility of superconducting or magnetic instabilities in the thermal ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Benfatto G., Gallavotti G.: Perturbation theory of the Fermi surface in a quantum liquid. A general quasiparticle formalism and one-dimensional systems. J. Stat. Phys. 59, 541–664 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Benfatto G., Gallavotti G.: Renormalization Group. Princeton University Press, Princeton, NJ (1995)

    MATH  Google Scholar 

  3. Benfatto G., Gallavotti G., Procacci A., Scoppola B.: Beta function and Schwinger functions for a many fermions system in one dimension. Anomaly of the fermi surface. Commun. Math. Phys. 160, 93–171 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Benfatto G., Giuliani A., Mastropietro V.: Fermi liquid behavior in the 2D Hubbard model at low temperatures. Ann. Henri Poincaré 7, 809–898 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Benfatto G., Mastropietro V.: Renormalization group, hidden symmetries and approximate Ward identities in the XYZ model. Rev. Math. Phys. 13, 1323–1435 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K.: The electronic properties of graphene. Rev. Mod. Phys. 18, 109–162 (2009)

    Article  ADS  Google Scholar 

  7. Disertori, M., Rivasseau, V.: Interacting Fermi Liquid in Two Dimensions at Finite Temperature. Part I and II, Commun. Math. Phys. 215, 251–290 and 291–341 (2000)

  8. Feldman J., Knörrer H., Trubowitz E.: A two dimensional Fermi liquid. Commun. Math. Phys 247, 1–319 (2004)

    Article  MATH  ADS  Google Scholar 

  9. Gawedski K., Kupiainen A.: Gross–Neveu model through convergent perturbation expansions. Commun. Math. Phys. 102, 1–30 (1985)

    Article  ADS  Google Scholar 

  10. Gentile G., Mastropietro V.: Renormalization group for one-dimensional fermions. A review on mathematical results. Renormalization group theory in the new millennium, III. Phys. Rep. 352, 273–437 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Giuliani A.: Ground state energy of the low density Hubbard model: An upper bound. J. Math. Phys. 48, 023302 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  12. Gonzalez J., Guinea F., Vozmediano M.A.H.: Non-Fermi liquid behavior of electrons in the half-filled honeycomb lattice (A renormalization group approach). Nucl. Phys. B 424, 595–618 (1994)

    Article  ADS  Google Scholar 

  13. Gonzalez J., Guinea F., Vozmediano M.A.H.: Electron-electron interactions in graphene sheets. Phys. Rev. B 63, 134421 (2001)

    Article  ADS  Google Scholar 

  14. Lesniewski A.: Effective action for the Yukawa2 quantum field theory. Commun. Math. Phys. 108, 437–467 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  15. Lieb, E.H.: Two Theorems on the Hubbard Model, Phys. Rev. Lett. 62, 1201–1204 (1989). Errata 62, 1927 (1989)

    Google Scholar 

  16. Lieb E.H., Seiringer R., Solovej J.P.: Ground-state energy of the low-density Fermi gas. Phys. Rev. A 71, 053605-1-13 (2005)

    ADS  Google Scholar 

  17. Mastropietro V.: Non-Perturbative Renormalization. World Scientific, River Edge, NJ (2008)

    MATH  Google Scholar 

  18. Mastropietro V.: Renormalization group and ward identities for infrared QED4. J. Math. Phys. 48, 102303 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  19. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  20. Pedra W., Salmhofer M.: Determinant bounds and the Matsubara UV problem of many-fermion systems. Commun. Math. Phys. 282, 797–818 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Salmhofer M.: Renormalization: An Introduction. Springer, Berlin-Heidelberg-New York (1999)

    MATH  Google Scholar 

  22. Seiringer R., Yin J.: Ground state energy of the low density Hubbard model. J. Stat. Phys. 131, 1139–1154 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Semenoff G.W.: Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53, 2449–2452 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  24. Wallace P.R.: The band theory of graphite. Phys. Rev. 71, 622–634 (1947)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Giuliani.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giuliani, A., Mastropietro, V. The Two-Dimensional Hubbard Model on the Honeycomb Lattice. Commun. Math. Phys. 293, 301–346 (2010). https://doi.org/10.1007/s00220-009-0910-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0910-5

Keywords

Navigation