Skip to main content
Log in

Colliding Solitons for the Nonlinear Schrödinger Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the collision of two fast solitons for the nonlinear Schrödinger equation in the presence of a slowly varying external potential. For a high initial relative speed ||v|| of the solitons, we show that, up to times of order ||v|| after the collision, the solitons preserve their shape (in L 2-norm), and the dynamics of the centers of mass of the solitons is approximately determined by the external potential, plus error terms due to radiation damping and the extended nature of the solitons. We remark on how to obtain longer time scales under stronger assumptions on the initial condition and the external potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perelman G.: Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations. Commun. Part. Diff. Eq. 29, 1051–1095 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Rodnianski I., Schlag W., Soffer A.: Asymptotic stability of N-soliton states of NLS. Commun. Pure Appl. Math. 58, 149–216 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Martel Y., Merle F., Tsai T.-P.: Stability in H 1 for the sum of K solitary waves to some nonlinear Schrödinger equations. Duke Math. J. 133, 405–466 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fröhlich J., Gustafson S., Jonsson B.L.G., Sigal I.M.: Solitary wave dynamics in an external potential. Commun. Math. Phys. 250(3), 613–642 (2004)

    Article  MATH  ADS  Google Scholar 

  5. Fröhlich J., Jonsson B.L.G., Gustafson S., Sigal I.M.: Long time motion of NLS solitary waves in a confining potential. Ann. Henri Poincare 7, 621–660 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Holmer J., Zworski M.: Slow soliton interaction with delta impurities. J. Mod. Dyn. 1, 689–718 (2007)

    MATH  MathSciNet  Google Scholar 

  7. Holmer, J., Zworski, M.: Soliton interaction with slowly varying potentials. IMRN ArtID 026, 36pp (2008)

  8. Abou Salem W.K.: Solitary wave dynamics in time-dependent potentials. J. Math. Phys. 49, 032101 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Abou Salem W.K.: Effective dynamics of solitons in the presence of rough nonlinear perturbations. Nonlinearity 22, 747–763 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Holmer J., Marzuola J., Zworski M.: Fast soliton scattering by delta impurities. Commun. Math. Phys. 274, 187–216 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Tao T.: Why are solitons stable?. Bull. Amer. Math. Soc. 46, 1–33 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Martel, Y., Merle, F.: Description of two soliton collision for the quartic gKdV equation. http://arxiv.org/abs/0709.267vL[math.AP], 2007

  13. Martel Y., Merle F.: Refined asymptotics around solitons for gKdV equations. Discrete Contin. Dyn. Syst. 20, 177–218 (2008)

    MATH  MathSciNet  Google Scholar 

  14. Martel Y., Merle F.: Stability of two soliton collision for nonintegrable gKdV equations. Commun. Math. Phys. 286, 39–79 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. Cazenave, T.: An Introduction to Nonlinear Schrödinger Equations. Textos de Métodos Matemáticos 26. Rio de Janeiro: Instituto de Matemática, 1996

  16. Grillakis M., Shatah J., Strauss W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74(1), 160–197 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Grillakis M., Shatah J., Strauss W.: Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94(2), 308–348 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation. Number 130 in Applied Mathematical Sciences. Springer, New York, 1999

  19. Berestycki H., Lions P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch Rat. Mech. Anal. 82, 313–345 (1983)

    MATH  MathSciNet  Google Scholar 

  20. Berestycki H., Lions P.-L.: Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch Rat. Mech. Anal. 82, 347–375 (1983)

    MATH  MathSciNet  Google Scholar 

  21. Munkres J.R.: Analysis on Manifolds. Addison-Wesley, Reading, MA (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. K. Abou Salem.

Additional information

Communicated by P. Constantin

Supported in part by NSERC grant NA 7901.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abou Salem, W.K., Fröhlich, J. & Sigal, I.M. Colliding Solitons for the Nonlinear Schrödinger Equation. Commun. Math. Phys. 291, 151–176 (2009). https://doi.org/10.1007/s00220-009-0871-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0871-8

Keywords

Navigation