Skip to main content
Log in

The Davey-Stewartson Equation on the Half-Plane

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Davey-Stewartson (DS) equation is a nonlinear integrable evolution equation in two spatial dimensions. It provides a multidimensional generalisation of the celebrated nonlinear Schrödinger (NLS) equation and it appears in several physical situations. The implementation of the Inverse Scattering Transform (IST) to the solution of the initial-value problem of the NLS was presented in 1972, whereas the analogous problem for the DS equation was solved in 1983. These results are based on the formulation and solution of certain classical problems in complex analysis, namely of a Riemann Hilbert problem (RH) and of either a d-bar or a non-local RH problem respectively. A method for solving the mathematically more complicated but physically more relevant case of boundary-value problems for evolution equations in one spatial dimension, like the NLS, was finally presented in 1997, after interjecting several novel ideas to the panoply of the IST methodology. Here, this method is further extended so that it can be applied to evolution equations in two spatial dimensions, like the DS equation. This novel extension involves several new steps, including the formulation of a d-bar problem for a sectionally non-analytic function, i.e. for a function which has different non-analytic representations in different domains of the complex plane. This, in addition to the computation of a d-bar derivative, also requires the computation of the relevant jumps across the different domains. This latter step has certain similarities (but is more complicated) with the corresponding step for those initial-value problems in two dimensions which can be solved via a non-local RH problem, like KPI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fokas A.S.: On the inverse scattering of first order systems in the plane related to nonlinear multidimensional equations. Phys. Rev. Lett. 51, 3–6 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  2. Fokas A.S., Ablowitz M.J.: On the inverse scattering of the time dependent Schrödinger equation and the associated KPI equation. Stud. Appl. Math. 69, 211–228 (1983)

    MATH  MathSciNet  Google Scholar 

  3. Ablowitz M.J., BarYaacov D., Fokas A.S.: On the inverse scattering transform for the Kadomtsev-Petvisvhili equation. Stud. Appl. Math. 69, 135–143 (1983)

    MATH  MathSciNet  Google Scholar 

  4. Fokas A.S., Ablowitz M.J.: On the inverse scattering transform of multi-dimensional nonlinear equations related to first order systems in the plane. J. Math. Phys. 25, 2494–2505 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Zhou X.: Inverse scattering transform for the time dependent Schrödinger equation with application to the KPI equation. Commun. Math. Phys. 128, 551–564 (1990)

    Article  MATH  ADS  Google Scholar 

  6. Beals R., Coifman R.R.: Linear spectral problems, nonlinear equations and the \({\bar{\partial}}\) -method. Inverse Problems 5, 87 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Fokas A.S., Sung L.Y.: On the solvability of the N-wave, the Davey-Stewartson and the Kadomtsev-Petviashvili equation. Inverse Problems 8, 673–708 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Fokas A.S.: A unified transform method for solving linear and certain nonlinear PDE’s. Proc. R. Soc. Lond. A 453, 1411–1443 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Pelloni B.: The spectral representation of two-point boundary value problems for linear evolution equations. Proc. Roy. Soc. Lond. A 461, 2965–2984 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Fokas A.S., Schultz P.F.: The long-time asymptotics of moving boundary problems using an ehrenpreis-type representation and its Riemann-Hilbert nonlinearisation. Comm. Pure Appl. Maths LVI, 1–40 (2002)

    Google Scholar 

  11. Fokas A.S., Sung L.Y.: Generalised fourier transforms, their nonlinearisation and the imaging of the brain, Notices of the AMS. Feature Article 52, 1176–1190 (2005)

    MathSciNet  Google Scholar 

  12. Fokas A.S.: Two dimensional linear PDEs in a convex polygon. Proc. R. Soc. Lond. A 457, 371–393 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Fokas A.S.: A generalised dirichlet to neumann map for certain nonlinear evolution PDEs. Comm. Pure Appl. Math. LVIII, 639–670 (2005)

    Article  MathSciNet  Google Scholar 

  14. Fokas A.S.: Integrable nonlinear evolution equations on the half-line. Commun. Math. Phys. 230, 1–39 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Boutetde Monvel A., Fokas A.S., Shepelsky D.: The analysis of the global relation for the nonlinear Schrödinger equation on the half-line. Lett. Math. Phys. 65, 199–212 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  16. Boutetde Monvel A., Fokas A.S., Shepelsky D.: Integrable nonlinear evolution equations on the interval. Commun. Math. Phys. 263, 133–172 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Biondini, G., Hwang, G.: Initial-boundary value problems for differential-difference evolution equations: Discrete linear and integrable nonlinear Schrödinger equations. http://arxiv.org/abs/0810.1300v1[nlin.SI], 2008, to appear in Inverse Problems

  18. Fokas, A.S.: A Unified Approach to Boundary Value Problems. Philadelphia, PA: SIAM, 2008

  19. Fokas A.S.: A new transform method for evolution PDEs. IMA J. Appl. Math. 67, 1–32 (2002)

    Article  MathSciNet  Google Scholar 

  20. Fokas A.S., Zyskin M.: The fundamental differential form and boundary-value problems. Q. J. Mech. App. Maths. 55, 457–479 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zakharov, V.E., Shabat, A.B.: A scheme for integrating the nonlinear equations of mathematical physics by the method of inverse scattering problem, Part I. Funct. Annal. Appl. 8, 43 (1974); A Scheme for Integrating the Nonlinear Equations of Mathematical Physics by the Method of Inverse Scattering Problem, Part II, Funct. Annal. Appl. 13, 13 (1979)

  22. Fokas A.S., Its A.R., Sung L.Y.: The nonlinear Schrödinger equation on the half-line. Nonlinearity 18, 1771–1822 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Flyer N., Fokas A.S.: A hybrid analytical numerical method for solving evolution partial dierential equations. I: The Half-Line. Proc. R. Soc. 464, 1823–1849 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Zheng, C.: Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equation. J. Comput. Phys. 215, 552–565 (2006); C. Zheng, Numerical Simulation of a Modified KdV Equation On the Whole Real Axis. Numer. Math. 105, 315–335 (2006)

    Google Scholar 

  25. Smitheman, S., Spence, E.A., Fokas, A.S.: A spectral collocation method for the laplace and the Modified Helmholtz equation in a convex polygon. IMA J. Num. Anal., in press

  26. Deift P., Zhou X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Bull. Am. Math. Soc. 20, 119 (1992)

    Article  MathSciNet  Google Scholar 

  27. Deift P., Venakides S., Zhou X.: New results in the small dispersion KdV by an extension of the method of steepest descent for Riemann-Hilbert problems. IMRN 6, 285–299 (1997)

    Google Scholar 

  28. Sung L.Y.: Long-time decay of the solutions of the Davey-Stewartson II equations. J. Nonlinear Sc. 5, 433–452 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  29. Kiselev O.M.: Asymptotics of a solution of the Kadomtsev-Petviashvili-2 equation. Proc. Steklov Institute of Mathematics 1, 107–139 (2001)

    MathSciNet  Google Scholar 

  30. Fokas A.S., Santini P.M.: Dromions and a boundary value problem for the Davey-Stewartson I Equation. Physica D 44, 99–130 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  31. Fokas A.S.: The Davey Stewartson I equation on the quarter plane with homogeneous Dirichlet boundary conditions. J. Math. Phys. 44, 3226–3244 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Fokas.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fokas, A.S. The Davey-Stewartson Equation on the Half-Plane. Commun. Math. Phys. 289, 957–993 (2009). https://doi.org/10.1007/s00220-009-0809-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0809-1

Keywords

Navigation