Skip to main content
Log in

Non-Perturbative Heat Kernel Asymptotics on Homogeneous Abelian Bundles

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the heat kernel for a Laplace type partial differential operator acting on smooth sections of a complex vector bundle with the structure group G × U(1) over a Riemannian manifold M without boundary. The total connection on the vector bundle naturally splits into a G-connection and a U(1)-connection, which is assumed to have a parallel curvature F. We find a new local short time asymptotic expansion of the off-diagonal heat kernel U(t|x, x′) close to the diagonal of M × M assuming the curvature F to be of order t −1. The coefficients of this expansion are polynomial functions in the Riemann curvature tensor (and the curvature of the G-connection) and its derivatives with universal coefficients depending in a non-polynomial but analytic way on the curvature F, more precisely, on tF. These functions generate all terms quadratic and linear in the Riemann curvature and of arbitrary order in F in the usual heat kernel coefficients. In that sense, we effectively sum up the usual short time heat kernel asymptotic expansion to all orders of the curvature F. We compute the first three coefficients (both diagonal and off-diagonal) of this new asymptotic expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Avramidi I.G.: The covariant technique for calculation of the heat kernel asymptotic expansion. Phys. Lett. B 238, 92–97 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  2. Avramidi, I.G.: The covariant technique for calculation of one-loop effective action. Nuc. Phys. B 355, 712–754 (1991); Erratum: Nucl. Phys. B 509, 557–558 (1998)

    Google Scholar 

  3. Avramidi I.G.: A new algebraic approach for calculating the heat kernel in gauge theories. Phys. Lett. B 305, 27–34 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Avramidi, I.G.: Covariant methods for calculating the low-energy effective action in quantum field theory and quantum gravity http://arXiv.org/abs/gr-qc/9403036v1, 1994

  5. Avramidi I.G.: The heat kernel on symmetric spaces via integrating over the group of isometries. Phys. Lett. B 336, 171–177 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  6. Avramidi I.G.: Covariant algebraic calculation of the one-loop effective potential in non-Abelian gauge theories and a new approach to stability problem. J. Math. Phys. 36, 1557–1571 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Avramidi, I.G.: Covariant algebraic method for calculation of the low-energy heat kernel. J. Math. Phys. 36, 5055–5070 (1995); Erratum: J. Math. Phys. 39, 1720 (1998)

    Google Scholar 

  8. Avramidi I.G.: A new algebraic approach for calculating the heat kernel in quantum gravity. J. Math. Phys. 37, 374–394 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Avramidi, I.G.: Covariant approximation schemes for calculation of the heat kernel in quantum field theory. In: Quantum Gravity, eds. V. A. Berezin, V. A. Rubakov, D. V. Semikoz, Singapore: World Scientific, 1997, pp. 61–78

  10. Avramidi I.G.: Covariant techniques for computation of the heat kernel. Rev. Math. Phys. 11, 947–980 (1999)

    Article  MathSciNet  Google Scholar 

  11. Avramidi, I.G.: Heat Kernel and Quantum Gravity, Lecture Notes in Physics, Series Monographs, LNP 64 Berlin: Springer-Verlag, 2000

  12. Avramidi I.G.: Heat kernel approach in quantum field theory. Nucl. Phys. Proc. Suppl. 104, 3–32 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  13. Avramidi I.G.: Heat kernel asymptotics on symmetric spaces, Proc. Midwest Geometry Conference, Published in Global. J. Pure Appl. Math. 1, 1–17 (2008)

    MathSciNet  Google Scholar 

  14. Avramidi I.G.: Heat kernel on homogeneous bundles. Int. J. Geom. Meth. Mod. Phys. 5, 1–23 (2008)

    Article  MathSciNet  Google Scholar 

  15. Avramidi, I.G.: Heat kernel on homogeneous bundles over symmetric spaces. To appear Commun. Math. Phys. doi:10.1007/s00220-008-0639-6, 2008

  16. Bateman, H., Erdeyi, A.: Higher Transcendental Functions. New-York: McGraw-Hill, vol. 2, 1953

  17. Camporesi R.: Harmonic analysis and propagators on homogeneous spaces. Phys. Rep. 196, 1–134 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  18. Gilkey P.B.: Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem. CRC Press, Boca Raton, FL (1995)

    MATH  Google Scholar 

  19. Hurt, N.E.: Geometric Quantization in Action: Applications of Harmonic Analysis in Quantum Statistical Mechanics and Quantum Field Theory, Dordrecht: Reidel Publishing, 1983

  20. Kirsten K.: Spectral Functions in Mathematics and Physics. CRC Press, Boca Raton, FL (2001)

    Google Scholar 

  21. Schwinger J.S.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Van de Ven A.E.M.: Index free heat kernel coefficients. Class. Quant. Grav. 15, 2311–2344 (1998)

    Article  MATH  ADS  Google Scholar 

  23. Vassilevich D.V.: Heat kernel expansion: user’s manual. Phys. Rep. 388, 279–360 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guglielmo Fucci.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avramidi, I.G., Fucci, G. Non-Perturbative Heat Kernel Asymptotics on Homogeneous Abelian Bundles. Commun. Math. Phys. 291, 543–577 (2009). https://doi.org/10.1007/s00220-009-0804-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0804-6

Keywords

Navigation