Skip to main content
Log in

A Noncommutative de Finetti Theorem: Invariance under Quantum Permutations is Equivalent to Freeness with Amalgamation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the classical de Finetti theorem has a canonical noncommutative counterpart if we strengthen “exchangeability” (i.e., invariance of the joint distribution of the random variables under the action of the permutation group) to invariance under the action of the quantum permutation group. More precisely, for an infinite sequence of noncommutative random variables \({(x_i)_{i\in\mathbb{N}}}\) , we prove that invariance of the joint distribution of the x i ’s under quantum permutations is equivalent to the fact that the x i ’s are identically distributed and free with respect to the conditional expectation onto the tail algebra of the x i ’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accardi L., Lu Y.G.: A continuous version of de Finetti’s theorem. Ann. Probab. 21, 1478–1493 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Banica T., Collins B.: Integration over quantum permutation groups. J. Funct. Anal. 242, 641–657 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Banica T., Bichon J., Collins B.: Quantum permutation groups: a survey. Banach Center Publ. 78, 13–34 (2007)

    Article  MathSciNet  Google Scholar 

  4. Curran, S.: Quantum exchangeable sequences of algebras. Preprint. (electronic) http://arXiv.org/abs/0812.3428v1 [math.OA], 2008

  5. Diaconis P., Freedman D.: Finite exchangeable sequences. Ann. Probab. 8, 745–764 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lehner F.: Cumulants in noncommutative probability theory. IV. Noncrossing cumulants: De Finetti’s theorem and L p-inequalities. J. Funct. Anal. 239, 214–246 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hiai, F., Petz, D.: The Semicircle Law, Free Random Variables and Entropy. Math. Surveys and Monogr. 77, Providence, RJ: Amer. Math. Soc., 2000

  8. Kallenberg, O.: Probabilistic Symmetries and Invariance Principles. Probability and Its Applications. Berlin-Heidelberg-New York: Springer-Verlag, 2005

  9. Köstler, C.: A noncommutative extended de Finetti theorem. Preprint. (electronic) http://arXiv.org/abs/0806.3621v1 [math.OA], 2008

  10. Köstler, C.: On Lehner’s ‘free’ noncommutative analogue of de Finetti’s theorem. Preprint. (electronic) http://arXiv.org/abs/0806.3632v1 [math.OA], 2008

  11. Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, no. 335. Cambridge: Cambridge University Press, 2006

  12. Speicher, R.: Combinatorial theory of the free product with amalgamation and operator-valued free probability theory. Mem. Amer. Math. Soc., Vol. 132(627), pp. x+88, 1998

  13. Takesaki M.: Theory of Operator Algebras II. Encyclopaedia of Mathematical Sciences. Springer, Berlin-Heidelberg-NewYork (2003)

    Google Scholar 

  14. Voiculescu D.: Operations on certain non-commutative operator-valued random variables. Astérisque 232, 243–275 (1995)

    MathSciNet  Google Scholar 

  15. Voiculescu D., Dykema K., Nica A.: Free Random Variables. Amer. Math. Soc., Providence, RI (1992)

    MATH  Google Scholar 

  16. Wang S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195, 195–211 (1998)

    Article  MATH  ADS  Google Scholar 

  17. Woronowicz S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111, 613–665 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Speicher.

Additional information

Communicated by Y. Kawahigashi

Research supported by Discovery and LSI grants from NSERC (Canada) and by a Killam Fellowship from the Canada Council for the Arts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köstler, C., Speicher, R. A Noncommutative de Finetti Theorem: Invariance under Quantum Permutations is Equivalent to Freeness with Amalgamation. Commun. Math. Phys. 291, 473–490 (2009). https://doi.org/10.1007/s00220-009-0802-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0802-8

Keywords

Navigation