Skip to main content
Log in

Surface Tension in the Dilute Ising Model. The Wulff Construction

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the surface tension and the phenomenon of phase coexistence for the Ising model on \({\mathbb{Z}^d\,(d\, \geqslant\, 2)}\) with ferromagnetic but random couplings. We prove the convergence in probability (with respect to random couplings) of surface tension and analyze its large deviations: upper deviations occur at volume order while lower deviations occur at surface order. We study the asymptotics of surface tension at low temperatures and relate the quenched value τ q of surface tension to maximal flows (first passage times if d =  2). For a broad class of distributions of the couplings we show that the inequality \({\tau^a\, \leqslant\, \tau^q}\) –where τ a is the surface tension under the averaged Gibbs measure – is strict at low temperatures. We also describe the phenomenon of phase coexistence in the dilute Ising model and discuss some of the consequences of the media randomness. All of our results hold as well for the dilute Potts and random cluster models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M., Chayes J.T., Chayes L., Newman C.M.: The phase boundary in dilute and random Ising and Potts ferromagnets. J. Phys. A 20(5), L313–L318 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  2. Aizenman M., Chayes J.T., Chayes L., Newman C.M.: Discontinuity of the magnetization in one-dimensional 1/| xy|2 Ising and Potts models. J. Stat. Phys. 50(1-2), 1–40 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Ambrosio L., Braides A.: Functionals defined on partitions in sets of finite perimeter. II. Semicontinuity, relaxation and homogenization. J. Math. Pures Appl. (9) 69(3), 307–333 (1990)

    MATH  MathSciNet  Google Scholar 

  4. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. New York: The Clarendon Press oxford University Press, 2000

  5. Bodineau T.: The Wulff construction in three and more dimensions. Commun. Math. Phys. 207(1), 197–229 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Bodineau T., Ioffe D., Velenik Y.: Rigorous probabilistic analysis of equilibrium crystal shapes. J. Math. Phys. 41(3), 1033–1098 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Bollobás, B.: Graph theory. Volume 63 of Graduate Texts in Mathematics. New York: Springer-Verlag, 1979

  8. Carmona P., Guerra F., Hu Y., Menjane O.: Strong disorder for a certain class of directed polymers in a random environment. J. Theoret. Probab. 19(1), 134–151 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cerf, R.: Large deviations for three dimensional supercritical percolation. Astérisque 267, vi+177 (2000)

  10. Cerf, R.: The Wulff crystal in Ising and percolation models. Volume 1878 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 2006

  11. Cerf R., Pisztora A.: On the Wulff crystal in the Ising model. Ann. Probab. 28(3), 947–1017 (2000)

    MATH  MathSciNet  Google Scholar 

  12. Chafaï, D.: Inégalités de Poincaré et de Gross pour les mesures de Bernoulli, de Poisson, et de Gauss. Unpublished, available at http://hal.archives-ouvertes.fr/ccsd-00012428, 2005

  13. Chayes J.T., Chayes L.: Bulk transport properties and exponent inequalities for random resistor and flow networks. Commun. Math. Phys. 105(1), 133–152 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Chayes J.T., Chayes L., Fröhlich J.: The low-temperature behavior of disordered magnets. Commun. Math. Phys. 100(3), 399–437 (1985)

    Article  ADS  Google Scholar 

  15. Chayes L., Machta J., Redner O.: Graphical representations for Ising systems in external fields. J. Stat. Phys. 93(1-2), 17–32 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Comets, F., Shiga, T., Yoshida, N.: Probabilistic analysis of directed polymers in a random environment: a review. In: Stochastic analysis on large scale interacting systems, Volume 39 of Adv. Stud. Pure Math., Tokyo: Math. Soc. Japan, 2004, pp. 115–142

  17. Comets F., Vargas V.: Majorizing multiplicative cascades for directed polymers in random media. ALEA Lat. Am. J. Probab. Math. Stat. 2, 267–277 (2006) (electronic)

    MATH  MathSciNet  Google Scholar 

  18. Dembo, A., Zeitouni, O.: Large deviations techniques and applications. Volume 38 of Applications of Mathematics (New York), second edition, New York: Springer-Verlag, 1998

  19. Deuschel J.-D., Pisztora A.: Surface order large deviations for high-density percolation. Probab. Theory Related Fields 104(4), 467–482 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dobrushin, R., Kotecký, R., Shlosman, S.: Wulff construction: A global shape from local interaction, Volume 104 of Translations of Mathematical Monographs. Providence, RI: Amer. Math. Soc., 1992

  21. Durrett R., Liggett T.M.: The shape of the limit set in Richardson’s growth model. Ann. Probab. 9(2), 186–193 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  22. Edwards R.G., Sokal A.D.: Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. Phys. Rev. D (3) 38(6), 2009–2012 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  23. Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. New York: Springer-Verlag, 1969

  24. Fonseca I.: The Wulff theorem revisited. Proc. Roy. Soc. London Ser. A 432(1884), 125–145 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Fonseca I., Müller S.: A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh Sect. A 119(1-2), 125–136 (1991)

    MATH  MathSciNet  Google Scholar 

  26. Grimmett G., Marstrand J.M.: The supercritical phase of percolation is well behaved. Proc. Roy. Soc. London Ser. A 430(1879), 439–457 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Huse D.A., Henley C.L.H.: Pinning and roughening of domain walls in Ising systems due to random impurities. Phys. Rev. Let. 54(25), 2708–2711 (1985)

    Article  ADS  Google Scholar 

  28. Ioffe D.: Large deviations for the 2D Ising model: a lower bound without cluster expansions. J. Stat. Phys. 74(1-2), 411–432 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Ioffe D.: Exact large deviation bounds up to T c for the Ising model in two dimensions. Probab. Theory Related Fields 102(3), 313–330 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ioffe D., Schonmann R.H.: Dobrushin-Kotecký-Shlosman theorem up to the critical temperature. Commun. Math. Phys. 199(1), 117–167 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Johansson K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209(2), 437–476 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Kesten, H.: Aspects of first passage percolation. In: École d’été de probabilités de Saint-Flour, XIV—1984, Volume 1180 of Lecture Notes in Math., Berlin: Springer, 1986, pp. 125–264

  33. Kesten H.: Surfaces with minimal random weights and maximal flows: a higher-dimensional version of first-passage percolation. Illinois J. Math. 31(1), 99–166 (1987)

    MathSciNet  Google Scholar 

  34. Kingman J.F.C.: The ergodic theory of subadditive stochastic processes. J. Roy. Statist. Soc. Ser. B 30, 499–510 (1968)

    MATH  MathSciNet  Google Scholar 

  35. Ledoux, M.: The concentration of measure phenomenon. Volume 89 of Mathematical Surveys and Monographs. Providence, RI: Amer. Math. Soc., 2001

  36. Messager A., Miracle-Solé S., Ruiz J.: Convexity properties of the surface tension and equilibrium crystals. J. Stat. Phys. 67(3-4), 449–470 (1992)

    Article  MATH  ADS  Google Scholar 

  37. Pfister C.-E.: Large deviations and phase separation in the two-dimensional Ising model. Helv. Phys. Acta 64(7), 953–1054 (1991)

    MathSciNet  Google Scholar 

  38. Pisztora A.: Surface order large deviations for Ising, Potts and percolation models. Probab. Theory Related Fields 104(4), 427–466 (1996)

    MATH  MathSciNet  Google Scholar 

  39. Rossignol, R., Théret, M.: Lower large deviations for maximal flows through a box in first passage percolation. http://arXiv.org/abs/0801.0967v1[math.PR], 2008

  40. Taylor J.E.: Crystalline variational problems. Bull. Amer. Math. Soc. 84(4), 568–588 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  41. Théret M.: On the small maximal flows in first passage percolation. Annales de la faculté des sciences de Toulouse 17(1), 207–219 (2008)

    MATH  Google Scholar 

  42. Théret M.: Upper large deviations for the maximal flow in first passage percolation. Stoch. Proc. Appl. 117(9), 1208–1233 (2007)

    Article  MATH  Google Scholar 

  43. Wouts, M.: Glauber dynamics in the dilute Ising model below T c . In preparation

  44. Wouts M.: A coarse graining for the Fortuin-Kasteleyn measure in random media. Stoch. Procs. Appl. 118(11), 1929–1972 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  45. Wouts, M.: The dilute Ising model : phase coexistence at equilibrium & dynamics in the region of phase transition. Ph.D. thesis, Université Paris 7 - Paris Diderot, available at http://tel.archives-ouvertes.fr/tel-00272899, 2007

  46. Zhang Y.: Critical behavior for maximal flows on the cubic lattice. J. Stat. Phys. 98(3-4), 799–811 (2000)

    Article  MATH  Google Scholar 

  47. Zhang, Y.: Limit theorems for maximum flows on a lattice. http://arXiv.org/abs/0710.4589[math.PR], 2007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Wouts.

Additional information

Communicated by F. Toninelli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wouts, M. Surface Tension in the Dilute Ising Model. The Wulff Construction. Commun. Math. Phys. 289, 157–204 (2009). https://doi.org/10.1007/s00220-009-0782-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0782-8

Keywords

Navigation