Skip to main content
Log in

Krein Signatures for the Faddeev-Takhtajan Eigenvalue Problem

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

One of the difficulties in analyzing eigenvalue problems that arise in connection with integrable systems is that they are frequently non-self-adjoint, making it difficult to determine where the spectrum lies. In this paper, we consider the problem of locating and counting the discrete eigenvalues associated with the Faddeev-Takhtajan eigenvalue problem, for which the sine-Gordon equation is the isospectral flow. In particular we show that for potentials having either zero topological charge or topological charge ± 1, and satisfying certain monotonicity conditions, the point spectrum lies on the unit circle and is simple. Furthermore, we give an exact count of the number of eigenvalues. This result is an analog of that of Klaus and Shaw for the Zakharov-Shabat eigenvalue problem. We also relate our results, as well as those of Klaus and Shaw, to the Krein stability theory for J-unitary matrices. In particular we show that the eigenvalue problem associated to the sine-Gordon equation has a J-unitary structure, and under the above conditions the point eigenvalues have a definite Krein signature, and are thus simple and lie on the unit circle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beolokolos E.D., Bobenko A.I., Enol’skii V.Z., Its A.R., Matveev V.B.: Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer-Verlag, Berlin (1994)

    Google Scholar 

  2. Bishop A.R., Flesch R., Forest M.G., McLaughlin D.W., Overman E.A. II: Correlations between chaos in a perturbed sine-Gordon equation and a truncated model system. SIAM J. Math. Anal. 21(6), 1511–1536 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blas, H., Carrion, H.L.: Solitons, kinks and extended hadron model based on the generalized sine-Gordon theory. J. High Energy Phys. 1, 027, 27 pp. (2007) (electronic)

  4. Buckingham, R., Miller, P.D.: Exact solutions of semiclassical non-characteristic cauchy problems for the sine-Gordon equation. http://arXiv.org/abs/07053159v1[nlin.SI], 2007

  5. Cuenda, S., Sánchez, A., Quintero, N.: Does the dynamics of sine-gordon solitons predict active regions of dna? http://arXiv.org/abs/0606028v1[q-bio.6N], 2006

  6. Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons. Springer Series in Soviet Mathematics. Berlin: Springer-Verlag, 1987, Translated from the Russian by A. G. Reyman [A. G. Reiman]

  7. Forest M.G., McLaughlin D.W.: Spectral theory for the periodic sine-Gordon equation: a concrete viewpoint. J. Math. Phys. 23(7), 1248–1277 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Gibbon J.D., James I.N., Moroz I.M.: An example of soliton behaviour in a rotating baroclinic fluid. Proc. Roy. Soc. London Ser. A 367(1729), 219–237 (1979)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18. Providence, RI: Amer. Math. Soc., 1969

  10. Goodman R.H., Haberman R.: Interaction of sine-Gordon kinks with defects: the two-bounce resonance. Phys. D 195(3-4), 303–323 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kaup D.J.: Method for solving the sine-gordon equation in laboratory coordinates. Studies in Appl. Math. 54(2), 165–179 (1975)

    MATH  ADS  MathSciNet  Google Scholar 

  12. Klaus M., Mityagin B.: Coupling constant behavior of eigenvalues of Zakharov-Shabat systems. J. Math. Phys. 48(12), 123502 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. Klaus M., Shaw J.K.: Purely imaginary eigenvalues of Zakharov-Shabat systems. Phys. Rev. E (3) 65(3), 036607 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. Klaus M., Shaw J.K.: On the eigenvalues of Zakharov-Shabat systems. SIAM J. Math. Anal. 34(4), 759–773 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lennholm E., Hörnquist M.: Revisiting Salerno’s sine-Gordon model of DNA: active regions and robustness. Physica D Nonlinear Phenomena 177, 233–241 (2003)

    Article  MATH  ADS  Google Scholar 

  16. McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Oxford Mathematical Monographs. New York: The Clarendon Press/Oxford University Press, Second edition, 1998

  17. Salerno M.: Discrete model for dna promoter dynamics. Phys. Rev. A 44(8), 5292–5297 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  18. Scott, A.C.: Magnetic flux annihilation in a large Josephson junction. In: Stochastic Behavior in Classical and Quantum Hamiltonian Systems (Volta Memorial Conf., Como, 1977), Volume 93 of Lecture Notes in Phys., Berlin: Springer, 1979, pp. 167–200

  19. Shlizerman E., Rom-Kedar V.: Hierarchy of bifurcations in the truncated and forced nonlinear Schrödinger model. Chaos 15(1), 013107 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  20. Takhtajan L.A., Faddeev L.D.: Essentially nonlinear one-dimensional model of classical field theory. Theor. Math. Phys. 21, 1046 (1974)

    Article  Google Scholar 

  21. Terng C.-L., Uhlenbeck K.: Geometry of solitons. Notices Amer. Math. Soc. 47(1), 17–25 (2000)

    MATH  MathSciNet  Google Scholar 

  22. Yakubovich, V.A., Starzhinskii, V.M.: Linear Differential Equations with Periodic Coefficients I, II. New York: Wiley, 1975

  23. Yamosa S.: Soliton excitations in deoxyribonucleic acid (dna). Phys. Rev. A 27(4), 2120–2125 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  24. Zaharov V.E., Takhtajan L.A., Faddeev L.D.: A complete description of the solutions of the “sine-Gordon” equation. Dokl. Akad. Nauk SSSR 219, 1334–1337 (1974)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared C. Bronski.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronski, J.C., Johnson, M.A. Krein Signatures for the Faddeev-Takhtajan Eigenvalue Problem. Commun. Math. Phys. 288, 821–846 (2009). https://doi.org/10.1007/s00220-009-0777-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0777-5

Keywords

Navigation