Skip to main content
Log in

Stability, Convergence to Self-Similarity and Elastic Limit for the Boltzmann Equation for Inelastic Hard Spheres

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the spatially homogeneous Boltzmann equation for inelastic hard spheres, in the framework of so-called constant normal restitution coefficients \({\alpha \in [0,1]}\) . In the physical regime of a small inelasticity (that is \({\alpha \in [\alpha_*,1)}\) for some constructive \({\alpha_* \in [0,1)}\)) we prove uniqueness of the self-similar profile for given values of the restitution coefficient \({\alpha \in [\alpha_*,1)}\) , the mass and the momentum; therefore we deduce the uniqueness of the self-similar solution (up to a time translation).

Moreover, if the initial datum lies in \({L^1_3}\) , and under some smallness condition on \({(1-\alpha_*)}\) depending on the mass, energy and \({L^1 _3}\) norm of this initial datum, we prove time asymptotic convergence (with polynomial rate) of the solution towards the self-similar solution (the so-called homogeneous cooling state).

These uniqueness, stability and convergence results are expressed in the self-similar variables and then translate into corresponding results for the original Boltzmann equation. The proofs are based on the identification of a suitable elastic limit rescaling, and the construction of a smooth path of self-similar profiles connecting to a particular Maxwellian equilibrium in the elastic limit, together with tools from perturbative theory of linear operators. Some universal quantities, such as the “quasi-elastic self-similar temperature” and the rate of convergence towards self-similarity at first order in terms of (1−α), are obtained from our study.

These results provide a positive answer and a mathematical proof of the Ernst-Brito conjecture [16] in the case of inelastic hard spheres with small inelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrahamsson F.: Strong L 1 convergence to equilibrium without entropy conditions for the Boltzmann equation. Comm. Part. Diff. Eqs. 24, 1501–1535 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bisi M., Carrillo J.A., Toscani G.: Contractive metrics for a Boltzmann equation for granular gases: diffusive equilibria. J. Stat. Phys. 118(1–2), 301–331 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bisi M., Carrillo J.A., Toscani G.: Decay rates in probability metrics towards homogeneous cooling states for the inelastic Maxwell model. J. Stat. Phys. 124(2–4), 625–653 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Blake M.D.: A spectral bound for asymptotically norm-continuous semigroups. J. Op. Th. 45, 111–130 (2001)

    MATH  MathSciNet  Google Scholar 

  5. Bobylev A.V., Carillo J.A., Gamba I.: On some properties of kinetic and hydrodynamics equations for inelastic interactions. J. Stat. Phys. 98, 743–773 (2000)

    Article  MATH  Google Scholar 

  6. Baranger C., Mouhot C.: Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials. Rev. Matem. Iberoam. 21, 819–841 (2005)

    MATH  MathSciNet  Google Scholar 

  7. Bobylev A.V., Cercignani C., Toscani G.: Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials. J. Stat. Phys. 111, 403–417 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bobylev A.V., Gamba I., Panferov V.: Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions. J. Stat. Phys. 116, 1651–1682 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Brilliantov N.V., Pöschel T.: Kinetic Theory of Granular Gases. Oxford Graduate Texts. Oxford University Press, Oxford (2004)

    Google Scholar 

  10. Caglioti E., Villani C.: Homogeneous cooling states are not always good approximations to granular flows. Arch. Rat. Mech. Anal. 163, 329–343 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carleman T.: Sur la théorie de l’équation intégrodifférentielle de Boltzmann. Acta Math. 60, 91–146 (1932)

    Article  MathSciNet  Google Scholar 

  12. Carleman, T.: Problèmes mathématiques dans la théorie cinétique des gaz. Uppsala: Almqvist and Wiksells Boktryckeri Ab, 1957

  13. Cercignani, C.: Recent developments in the mechanics of granular materials. In: Fisica matematica e ingegneria delle strutture, Bologna: Pitagora Editrice, 1995, pp. 119–132

  14. Csiszár I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8, 85–108 (1963)

    MATH  Google Scholar 

  15. Ernst M.H., Brito R.: Driven inelastic Maxwell molecules with high energy tails. Phys. Rev. E 65, 85–108 (2002)

    Article  Google Scholar 

  16. Ernst M.H., Brito R.: Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails. J. Stat. Phys. 109, 407–432 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gamba I., Panferov V., Villani C.: On the Boltzmann equation for diffusively excited granular media. Commun. Math. Phys. 246, 503–541 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Grad, H.: Asymptotic theory of the Boltzmann equation. II. In: Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l’UNESCO, Paris, 1962), Vol. I, New York: Academic Press, 1963, pp 26–59

  19. Haff P.K.: Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401–430 (1983)

    Article  MATH  ADS  Google Scholar 

  20. Hilbert, D.: Grundzüge einer Allgemeinen Theorie der Linearen Integralgleichungen. Math. Ann. 72, (1912), New York: Chelsea Publ., 1953

  21. Kato T.: Perturbation Theory for Linear Operators. Springer-Verlag, Berlin (1995)

    MATH  Google Scholar 

  22. Kullback S.: Information Theory and Statistics. John Wiley, New York (1959)

    MATH  Google Scholar 

  23. Mischler S., Mouhot C., Rodriguez Ricard M.: Cooling process for inelastic Boltzmann equations for hard spheres, Part I: The Cauchy problem. J. Stat. Phys. 124, 655–702 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Mischler S., Mouhot C.: Cooling process for inelastic Boltzmann equations for hard spheres, Part I:Self-similar solutions and tail behavior. J. Stat. Phys. 124, 703–746 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Mischler, S., Mouhot, C.: Work in progress

  26. Mischler S., Wennberg B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. Henri Poincaré, Analyse non linéaire 16, 467–501 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Mouhot C.: Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 261, 629–672 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Mouhot C., Villani C.: Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch. Rat. Mech. Anal. 173, 169–212 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nirenberg, L.: Topics in Nonlinear Functional Analysis. With a chapter by E. Zehnder. Notes by R. A. Artino. Lecture Notes, 1973–1974. New York: Courant Institute of Mathematical Sciences, New York University, 1974

  30. Pulvirenti A., Wennberg B.: A Maxwellian lower bound for solutions to the Boltzmann equation. Commun. Math. Phys. 183, 145–160 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Villani C.: Cercignani’s conjecture is sometimes true and always almost true. Commun. Math. Phys. 234, 455–490 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Yao P.F.: On the inversion of the Laplace transform of C 0 semigroups and its applications. SIAM J. Math. Anal. 26, 1331–1341 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mischler.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mischler, S., Mouhot, C. Stability, Convergence to Self-Similarity and Elastic Limit for the Boltzmann Equation for Inelastic Hard Spheres. Commun. Math. Phys. 288, 431–502 (2009). https://doi.org/10.1007/s00220-009-0773-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0773-9

Keywords

Navigation