Skip to main content
Log in

On Action-Minimizing Retrograde and Prograde Orbits of the Three-Body Problem

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A retrograde orbit of the planar three-body problem is a relative periodic solution with two adjacent masses revolving around each other in one direction while their mass center revolves around the third mass in the other direction. The orbit is said to be prograde or direct if both revolutions follow the same direction. Let T > 0 and \({\phi\in[0,2\pi)}\) be fixed, and consider the rotating frame which rotates the inertia frame about the origin with angular velocity \({\frac{\phi}{T}}\) . In a recent work of K.-C.Chen [5], the existence of action-minimizing retrograde orbits which are T-periodic on this rotation frame were proved to exist for a large class of masses and a continuum of \({\phi}\) . In this paper we generalize the main result in [5], provide some quantitative estimates for admissible masses and mutual distances, and show miscellaneous examples of action-minimizing retrograde orbits. We also show the existence of some prograde and retrograde solutions with additional symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barutello V., Ferrario D., Terracini S.: Symmetry groups of the planar three-body problem and action-minimizing trajectories. Arch. Ration. Mech. Anal. 190, 189–226 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Broucke R.: On relative periodic solutions of the planar general three-body problem. Celes. Mech. 12, 439–462 (1975)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Chen K.-C.: Binary decompositions for the planar N-body problem and symmetric periodic solutions. Arch. Ration. Mech. Anal. 170, 247–276 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen K.-C.: Removing collision singularities from action minimizers for the N-body problem with free boundaries. Arch. Ration. Mech. Anal. 181, 311–331 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen K.-C.: Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses. Annals of Math. 167, 325–348 (2008)

    Article  MATH  Google Scholar 

  6. Chen, K.-C.: Variational constructions for some satellite orbits in periodic gravitational force fields. Amer. J. Math. (2009, to appear)

  7. Chenciner, A.: Symmetries and “Simple” Solutions of the Classical N-body Problem. Proceeding of ICMP, Lisbone, 2003, River Edge, NJ, World Scientific, 2006

  8. Chenciner A., Féjoz J., Montgomery R.: Rotating eights I. Nonlinearity 18, 1407–1424 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Chenciner A., Montgomery R.: A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. Math. 152, 881–901 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ferrario D., Terracini S.: On the existence of collisionless equivariant minimizers for the classical n-body problem. Invent. Math. 155, 305–362 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Gordon W.: A minimizing property of Keplerian orbits. Amer. J. Math. 99, 961–971 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hénon M.: A family of periodic solutions of the planar three-body problem, and their stability. Celes. Mech. 13, 267–285 (1976)

    Article  MATH  ADS  Google Scholar 

  13. http://www.math.nthu.edu.tw/~kchen/retrograde.html

  14. Meyer, K.R.: Periodic Solutions of the N-body Problem. Lecture Notes in Mathematics, Vol. 1719, Berlin: Springer-Verlag, 1999

  15. Marchal, C.: The Three-Body Problem. Studies in Astronautics, 4. Amsterdam: Elsevier Science Publishers, B.V., 1990

  16. Moeckel R.: A topological existence proof for the Schubart orbits in the collinear three-body problem. Discrete Contin. Dyn. Syst. Ser. B 10, 609–620 (2008)

    MATH  MathSciNet  Google Scholar 

  17. Montgomery R.: The N-body problem, the braid group, and action-minimizing periodic solutions. Nonlinearity 11, 363–376 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Moore C.: Braids in classical dynamics. Phy. Rev. Lett. 70, 3675–3679 (1993)

    Article  MATH  ADS  Google Scholar 

  19. Palais R.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Schubart J.: Numerische Aufsuchung periodischer Lösungen im Dreikörperproblem. Astr. Nachr. 283, 17–22 (1956)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Simó, C.: Choreographic solutions of the planar three body problem. http://www.maia.ub.es/dsg/3body.html

  22. Szebehely V.: Theory of Orbits – The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    Google Scholar 

  23. Venturelli A.: A variational proof of the existence of von Schubart’s orbit. Discrete Contin. Dyn. Syst. Ser. B 10, 699–717 (2008)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Chang Chen.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, KC., Lin, YC. On Action-Minimizing Retrograde and Prograde Orbits of the Three-Body Problem. Commun. Math. Phys. 291, 403–441 (2009). https://doi.org/10.1007/s00220-009-0769-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0769-5

Keywords

Navigation