Skip to main content
Log in

Fractional Moment Bounds and Disorder Relevance for Pinning Models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the critical point of directed pinning/wetting models with quenched disorder. The distribution K(·) of the location of the first contact of the (free) polymer with the defect line is assumed to be of the form K(n) = n α-1 L(n), with α ≥ 0 and L(·) slowly varying. The model undergoes a (de)-localization phase transition: the free energy (per unit length) is zero in the delocalized phase and positive in the localized phase. For α < 1/2 disorder is irrelevant: quenched and annealed critical points coincide for small disorder, as well as quenched and annealed critical exponents [3,28]. The same has been proven also for α = 1/2, but under the assumption that L(·) diverges sufficiently fast at infinity, a hypothesis that is not satisfied in the (1 + 1)-dimensional wetting model considered in [12,17], where L(·) is asymptotically constant. Here we prove that, if 1/2 < α < 1 or α > 1, then quenched and annealed critical points differ whenever disorder is present, and we give the scaling form of their difference for small disorder. In agreement with the so-called Harris criterion, disorder is therefore relevant in this case. In the marginal case α = 1/2, under the assumption that L(·) vanishes sufficiently fast at infinity, we prove that the difference between quenched and annealed critical points, which is smaller than any power of the disorder strength, is positive: disorder is marginally relevant. Again, the case considered in [12,17] is out of our analysis and remains open.

The results are achieved by setting the parameters of the model so that the annealed system is localized, but close to criticality, and by first considering a quenched system of size that does not exceed the correlation length of the annealed model. In such a regime we can show that the expectation of the partition function raised to a suitably chosen power \({\gamma \in (0, 1)}\) is small. We then exploit such an information to prove that the expectation of the same fractional power of the partition function goes to zero with the size of the system, a fact that immediately entails that the quenched system is delocalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M., Molchanov S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157, 245–278 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Aizenman M., Schenker J.H., Friedrich R.M., Hundertmark D.: Finite-volume fractional-moment criteria for Anderson localization. Commun. Math. Phys. 224, 219–253 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Alexander K.S.: The effect of disorder on polymer depinning transitions. Commun. Math. Phys. 279, 117–146 (2008)

    Article  MATH  ADS  Google Scholar 

  4. Alexander K.S., Sidoravicius V.: Pinning of polymers and interfaces by random potentials. Ann. Appl. Probab. 16, 636–669 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alexander, K.S., Zygouras, N.: Quenched and annealed critical points in polymer pinning models. http://arxiv.org/abs0805.1708V1[math.PR], 2008

  6. Bingham N.H., Goldie C.M., Teugels J.L.: Regular variation. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  7. Birkner, M., Sun, R.: Annealed vs quenched critical points for a random walk pinning model. http://arxiv.org/abs:0807.2752V1[math.PR], 2008

  8. Bolthausen, E., Caravenna, F., de Tilière, B.: The quenched critical point of a diluted disordered polymer model. Stochastic Process. Appl. (to appear), http://arxiv.org/abs/0711.0141V2[math.PR], 2007

  9. Buffet E., Patrick A., Pulé J.V.: Directed polymers on trees: a martingale approach. J. Phys. A Math. Gen. 26, 1823–1834 (1993)

    Article  MATH  ADS  Google Scholar 

  10. Chayes J.T., Chayes L., Fisher D.S., Spencer T.: Finite-size scaling and correlation lengths for disordered systems. Phys. Rev. Lett. 57, 2999–3002 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  11. Coluzzi B., Yeramian E.: Numerical evidence for relevance of disorder in a Poland-Scheraga DNA denaturation model with self-avoidance: Scaling behavior of average quantities. Eur. Phys. J. B 56, 349–365 (2007)

    Article  ADS  Google Scholar 

  12. Derrida B., Hakim V., Vannimenus J.: Effect of disorder on two-dimensional wetting. J. Stat. Phys. 66, 1189–1213 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Doney R.A.: One-sided local large deviation and renewal theorems in the case of infinite mean. Probab. Theory Rel. Fields 107, 451–465 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. von Dreifus H.: Bounds on the critical exponents of disordered ferromagnetic models. Ann. Inst. H. Poincaré Phys. Théor. 55, 657–669 (1991)

    MATH  MathSciNet  Google Scholar 

  15. Evans M.R., Derrida B.: Improved bounds for the transition temperature of directed polymers in a finite-dimensional random medium. J. Stat. Phys. 69, 427–437 (1992)

    Article  MATH  ADS  Google Scholar 

  16. Fisher M.E.: Walks, walls, wetting, and melting. J. Stat. Phys. 34, 667–729 (1984)

    Article  MATH  ADS  Google Scholar 

  17. Forgacs G., Luck J.M., Nieuwenhuizen Th.M., Orland H.: Wetting of a disordered substrate: exact critical behavior in two dimensions. Phys. Rev. Lett. 57, 2184–2187 (1986)

    Article  ADS  Google Scholar 

  18. Gangardt D.M., Nechaev S.K.: Wetting transition on a one-dimensional disorder. J. Stat. Phys. 130, 483–502 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Garsia A., Lamperti J.: A discrete renewal theorem with infinite mean. Comment. Math. Helv. 37, 221–234 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  20. Giacomin G.: Random Polymer Models. Imperial College Press/World Scientific, River Edge, NJ (2007)

    MATH  Google Scholar 

  21. Giacomin, G., Lacoin, H., Toninelli, F.L.: Hierarchical pinning models, quadratic maps and quenched disorder. Probab. Theory Rel. Fields (to appear), http://arxiv.org/abs/0711.4649V2[math.PR], 2007

  22. Giacomin, G., Lacoin, H., Toninelli, F.L.: Marginal relevance of disorder for pinning models. http://arxiv.org/abs/0811.0723V1[math-ph], 2008

  23. Giacomin G., Toninelli F.L.: Estimates on path delocalization for copolymers at selective interfaces. Probab. Theor. Rel. Fields 133, 464–482 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Giacomin G., Toninelli F.L.: Smoothing effect of quenched disorder on polymer depinning transitions. Commun. Math. Phys. 266, 1–16 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Giacomin, G., Toninelli, F.L.: On the irrelevant disorder regime of pinning models. preprint (2007). http://arxiv.org/abs/0707.3340V1[math.PR]

  26. Harris A.B.: Effect of Random Defects on the Critical Behaviour of Ising Models. J. Phys. C 7, 1671–1692 (1974)

    Article  ADS  Google Scholar 

  27. Kafri Y., Mukamel D., Peliti L.: Why is the DNA denaturation transition first order?. Phys. Rev. Lett. 85, 4988–4991 (2000)

    Article  ADS  Google Scholar 

  28. Toninelli F.L.: A replica-coupling approach to disordered pinning models. Commun. Math. Phys. 280, 389–401 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Toninelli F.L.: Disordered pinning models and copolymers: beyond annealed bounds. Ann. Appl. Probab. 18, 1569–1587 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giambattista Giacomin.

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derrida, B., Giacomin, G., Lacoin, H. et al. Fractional Moment Bounds and Disorder Relevance for Pinning Models. Commun. Math. Phys. 287, 867–887 (2009). https://doi.org/10.1007/s00220-009-0737-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0737-0

Keywords

Navigation