Skip to main content
Log in

The N = 1 Triplet Vertex Operator Superalgebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a newfamily of C 2-cofinite N = 1 vertex operator superalgebras \({\mathcal{SW}(m)}\), m ≥ 1, which are natural super analogs of the triplet vertex algebra family \({\mathcal{W}(p)}\), p ≥ 2, important in logarithmic conformal field theory. We classify irreducible \({\mathcal{SW}(m)}\)-modules and discuss logarithmic modules. We also compute bosonic and fermionic formulas of irreducible \({\mathcal{SW}(m)}\) characters. Finally, we contemplate possible connections between the category of \({\mathcal{SW}(m)}\)-modules and the category of modules for the quantum group \({U^{small}_q(sl_2)}\), \({q = e^{\frac{2 \pi i}{2m+1}}}\), by focusing primarily on properties of characters and the Zhu’s algebra \({A(\mathcal{SW}(m))}\). This paper is a continuation of our paper Adv. Math. 217, no.6, 2664–2699 (2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe T.: A \({\mathbb{Z}_{2}}\)-orbifold model of the symplectic fermionic vertex operator superalgebra. Math. Z. 255, 755–792 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adamović D.: Rationality of Neveu-Schwarz vertex operator superalgebras. Internat. Math. Res. Notices 17, 865–874 (1997)

    Article  Google Scholar 

  3. Adamović D.: Representations of the vertex algebra \({\mathcal{W}_{1+\infty}}\) with a negative integer central charge. Comm. Algebra 29(7), 3153–3166 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Adamović D.: Classification of irreducible modules of certain subalgebras of free boson vertex algebra. J. Algebra 270, 115–132 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Adamović D., Milas A.: Logarithmic intertwining operators and \({\mathcal{W}(2, 2p - 1)}\) -algebras. J. Math. Physics 48, 073503 (2007)

    Article  ADS  Google Scholar 

  6. Adamović D., Milas A.: On the triplet vertex algebra \({\mathcal{W}(p)}\) . Adv. Math. 217, 2664–2699 (2008)

    MATH  MathSciNet  Google Scholar 

  7. Adamović D., Milas A.: The N = 1 triplet vertex operator superalgebras: twisted sector. SIGMA 4(87), 1–24 (2008)

    Google Scholar 

  8. Arakawa T.: Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture. Duke Math. J. 130, 435–478 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bouwknegt P., Schoutens K.: \({\mathcal{W}}\) –symmetry in Conformal Field Theory. Phys. Rept. 223, 183–276 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  10. Carqueville N., Flohr M.: Nonmeromorphic operator product expansion and C 2-cofiniteness for a family of \({\mathcal{W}}\)-algebras. Phys. A: Math. Gen. 39, 951–966 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Dong C.: Vertex algebras associated with even lattices. J. Algebra 160, 245–65 (1993)

    Article  Google Scholar 

  12. Dong C., Lepowsky J.: Generalized vertex algebras and relative vertex operators. Birkhäuser, Boston (1993)

    MATH  Google Scholar 

  13. Dong, C., Jiang, C.: Rationality of vertex operator algebras. http://arxiv.org/abs/math/0607679.v1[math.QA], 2006

  14. De Sole A., Kac V.: Finite vs. affine W-algebras. Japanese J. Math. 1, 137–261 (2006)

    Article  MATH  Google Scholar 

  15. Eholzer W., Flohr M., Honecker A., Hubel R., Nahm W., Vernhagen R.: Representations of \({\mathcal{W}}\) –algebras with two generators and new rational models. Nucl. Phys. B 383, 249–288 (1992)

    Article  ADS  Google Scholar 

  16. Feingold, A.J., Frenkel, I.B., Ries, J.: Spinor Construction of Vertex Operator Algebras, Triality, and E (1)8 . Cont. Math. 121, Providence, RI: Amer. Math. Soc., 1991

  17. Feingold, A.J., Ries, J., Weiner, M.: Spinor construction of the \({c=\frac{1}{2}}\) minimal model. In: Moonshine, The Monster and related topics, Contemporary Math. 193, Chongying Dong, Geoffrey Mason, eds., Providence, RI: Amer. Math. Soc., 1995, pp. 45–92

  18. Feigin, B., Fuchs, D.B.: Representations of the Virasoro algebra. In: Representations of infinite-dimensional Lie groups and Lie algebras. New York: Gordon andd Breach, 1989

  19. Feigin, B., Feigin, E., Tipunin, I.: Fermionic formulas for (1, p) logarithmic model characters in \({\Phi_{2,1}}\) quasiparticle realisation. http://arxiv.org/abs/0704.2464.v4[hepth], 2007

  20. Feigin B.L., Gaĭnutdinov A.M., Semikhatov A.M., Yu Tipunin I.: Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center. Commun. Math. Phys. 265, 47–93 (2006)

    Article  MATH  ADS  Google Scholar 

  21. Feigin B.L., Gaĭnutdinov A.M., Semikhatov A.M., Yu Tipunin I.: The Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logorithmic conformal field theories. Theor. Math. Phys. 148, 1210–1235 (2006)

    Article  Google Scholar 

  22. Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104, 1993

  23. Finkelberg, M.: Am equivalence of fusion categories. Geom. Funct. Anal. 249–267 (1996)

  24. Flohr M.: On modular invariant partition functions of conformal field theories with logarithmic operators. Internat. J. Modern Phys. A 11, 4147–4172 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Flohr M.: Bits and pieces in logarithmic conformal field theory. Proceedings of the School and Workshop on Logarithmic Conformal Field Theory and its Applications (Tehran 2001(Internat. J. Mod. Phys. A 18), 4497–4591 (2003)

    Google Scholar 

  26. Flohr M., Grabow C., Koehn M.: Fermionic formulas for the characters of c p,1 logarithmic field theory. Nucl. phys. B 768, 263–276 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Frenkel, E., Ben-Zvi, D.: Vertex algebras and algebraic curves, Mathematical Surveys and Monographs; no. 88, Providence, RI: Amer. Math. Soc., 2001

  28. Frenkel I.B., Lepowsky J., Meurman A.: Vertex Operator Algebras and the Monster, Pure and Applied Math, Vol. 134. Academic Press, New York (1988)

    Google Scholar 

  29. Frenkel I.B., Zhu Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66, 123–168 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Fuchs J., Hwang S., Semikhatov A.M., Tipunin I.Yu.: Nonsemisimple fusion algebras and the Verlinde formula. Commun. Math. Phys. 247(3), 713–742 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Gaberdiel M., Kausch H.G.: A rational logarithmic conformal field theory. Phys. Lett B 386, 131–137 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  32. Gaberdiel M., Kausch H.G.: A local logarithmic conformal field theory. Nucl. Phys. B 538, 631–658 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Gao Y., Li H.: Generalized vertex algebras generated by parafermion-like vertex operators. J. Algebra. 240, 771–807 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  34. Heluani, R., Kac, V.: SUSY lattice vertex algebras. http://arxiv.org/abs/0710.1587.v1[math.QA], 2007

  35. Honecker A.: Automorphisms of \({\mathcal{W}}\) algebras and extended rational conformal field theories. Nucl. Phys. B 400, 574–596 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Huang, Y-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor product theory for generalized modules for a conformal vertex algebra. http://arxiv.org/abs/0710.2687.v3[math.QA], 2007

  37. Huang Y.-Z., Milas A.: Intertwining operator superalgebras and vertex tensor categories for superconformal algebras, I. Commun. Contemp. Math. 4, 327–355 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. Iohara K., Koga Y.: Fusion algebras for N =1 superconformal field theories through coinvariants, II, N = 1 super-Virasoro-symmetry. J. Lie Theory 11, 305–337 (2001)

    MATH  MathSciNet  Google Scholar 

  39. Iohara K., Koga Y.: Representation theory of the Neveu-Schwarz and Ramond algebras II: Fock modules. Ann. Inst. Fourier. Grenoble 53(6), 1755–1818 (2003)

    MATH  MathSciNet  Google Scholar 

  40. Kac, V.G.: Vertex Algebras for Beginners, University Lecture Series, Second Edition. Providence, RI: Amer. Math. Soc., Vol. 10, 1998

  41. Kac V.G., Wang W.: Vertex operator superalgebras and their representations. Contemp. Math. 175, 161–191 (1994)

    MathSciNet  Google Scholar 

  42. Kac V., Wakimoto M.: Quantum Reduction and Representation Theory of Superconformal Algebras. Adv. Math. 185, 400–458 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  43. Kerler T.: Mapping class group actions on quantum doubles. Commun. Math. Phys. 168(2), 353–388 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. Lachowska A.: On the center of the small quantum group. J. Algebra 262, 313–331 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  45. Lepowsky, J., Li, H.: Introduction to Vertex Operator Algebras and Their Representations, Progress in Mathematics Vol. 227. Boston: Birkhäuser, 2003

  46. Li H.: Local systems of vertex operators, vertex superalgebras and modules. J. Pure Appl. Algebra 109, 143–195 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  47. Mavromatos N., Szabo R.: The Neveu-Schwarz and Ramond algebras of logarithmic superconformal field theory. JHEP 0301, 041 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  48. Meurman A., Rocha-Caridi A.: Highest weight representations of the Neveu-Schwarz and Ramond algebras. Commun. Math. Phys. 107, 263–294 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. Milas A.: Fusion rings for degenerate minimal models. J. Algebra 254(2), 300–335 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  50. Milas, A.: Weak modules and logarithmic intertwining operators for vertex operator algebras. In: Recent developments in infinite-dimensional Lie algebras and conformal field theory (Charlottesville, VA, 2000), Contemp. Math. 297, Providence, RI: Amer. Math. Soc. 2002, pp. 201–225

  51. Milas A.: Logarithmic intertwining operators and vertex operators. Commun. Math. Phys. 277, 497–529 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. Milas A.: Characters, Supercharacters and Weber modular functions. Crelle’s Journal 608, 35–64 (2007)

    MATH  MathSciNet  Google Scholar 

  53. Mimachi K., Yamada Y.: Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials. Commun. Math. Phys. 174, 447–455 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. Miyamoto M.: Modular invariance of vertex operator algebras satisfying C 2-cofiniteness. Duke Math. J. 122, 51–91 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  55. Semikhatov A.: Factorizable ribbon quantum groups in logarithmic conformal field theories. Theo. Math. Phys. 154, 433–453 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  56. Ole Warnaar S.: Proof of the Flohr-Grabow-Koehn conjecture for characters of logarithmic field theory. J. Phys. A: Math. Theor. 40, 12243–12254 (2007)

    Article  MATH  Google Scholar 

  57. Wang W.: Rationality of Virasoro vertex operator algebras. Internat. Math. Res. Notices 71(1), 197–211 (1993)

    Article  Google Scholar 

  58. Zhu Y.-C.: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9, 237–302 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antun Milas.

Additional information

Communicated by Y. Kawahigashi.

The second author was partially supported by NSF grant DMS-0802962.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamović, D., Milas, A. The N = 1 Triplet Vertex Operator Superalgebras. Commun. Math. Phys. 288, 225–270 (2009). https://doi.org/10.1007/s00220-009-0735-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0735-2

Keywords

Navigation