Skip to main content
Log in

An Infinite Genus Mapping Class Group and Stable Cohomology

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We exhibit a finitely generated group \({\mathcal {M}}\) whose rational homology is isomorphic to the rational stable homology of the mapping class group. It is defined as a mapping class group associated to a surface \({\mathcal {S}_\infty}\) of infinite genus, and contains all the pure mapping class groups of compact surfaces of genus g with n boundary components, for any g ≥ 0 and n > 0. We construct a representation of \({\mathcal {M}}\) into the restricted symplectic group \({{\rm Sp_{\rm res}}(\mathcal {H}_r)}\) of the real Hilbert space generated by the homology classes of non-separating circles on \({\mathcal {S}_\infty}\) , which generalizes the classical symplectic representation of the mapping class groups. Moreover, we show that the first universal Chern class in \({H^2(\mathcal {M}, \mathbb {Z})}\) is the pull-back of the Pressley-Segal class on the restricted linear group \({{\rm GL_{\rm res}}(\mathcal {H})}\) via the inclusion \({{\rm Sp_{\rm res}}(\mathcal {H}_r) \subset {\rm GL_{\rm res}}(\mathcal {H})}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bakalov, B., Kirillov, Jr. A.: Lectures on tensor categories and modular functors. A.M.S. University Lecture Series. 21, Providence, RI: Amer. Math. Soc., 2001

  2. Bakalov B., Kirillov Jr. A.: On the Lego-Teichmüller game. Transform. Groups 5, 207–244 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borel A.: Stable real cohomology of arithmetic groups. Ann. Sci. École Norm. Sup. (4) 7, 235–272 (1974)

    MATH  MathSciNet  Google Scholar 

  4. Brown, K.S.: The geometry of finitely presented infinite simple groups. In: Algorithms and Classification in Combinatorial Group Theory, Baumslag, G., Miller, C.F. III, eds., MSRI Publications, Vol. 23. Berlin, Heidelberg, New-York: Springer-Verlag, 1992, pp. 121–136

  5. Cannon J.W., Floyd W.J., Parry W.R.: Introductory notes on Richard Thompson’s groups. Enseign. Math. 42, 215–256 (1996)

    MATH  MathSciNet  Google Scholar 

  6. Connes A., Karoubi M.: Caractère multiplicatif d’un module de Fredholm. K-Theory 2, 431–463 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Funar L., Gelca R.: On the groupoid of transformations of rigid structures on surfaces. J. Math. Sci. Univ. Tokyo 6, 599–646 (1999)

    MATH  MathSciNet  Google Scholar 

  8. Funar L., Kapoudjian C.: On a universal mapping class group of genus zero. G.A.F.A. 14, 965–1012 (2004)

    MATH  MathSciNet  Google Scholar 

  9. Funar L., Kapoudjian C.: The braided Ptolemy-Thompson group is finitely presented. Geom. Topol. 12, 475–530 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gervais S.: A finite presentation of the mapping class group of a punctured surface. Topology 40, 703–725 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ghys E., Sergiescu V.: Sur un groupe remarquable de difféomorphismes du cercle. Comment. Math. Helve. 62, 185–239 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guichardet A., Wigner D.: Sur la cohomologie réelle des groupes de Lie simples réels. Ann. Sci. École Norm. Sup. (4) 11, 277–292 (1978)

    MATH  MathSciNet  Google Scholar 

  13. Harer J.: The second homology group of the mapping class group of an orientable surface. Invent. Math. 72, 221–239 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Harer J.: Stability of the homology of the mapping class groups of orientable surfaces. Ann. of Math. 121, 215–249 (1983)

    Article  MathSciNet  Google Scholar 

  15. Hatcher A., Lochak P., Schneps L.: On the Teichmüller tower of mapping class groups. J. Reine Angew. Math. 521, 1–24 (2000)

    MATH  MathSciNet  Google Scholar 

  16. Hatcher A., Thurston W.: A presentation for the mapping class group of a closed orientable surface. Topology 19, 221–237 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kuiper N.: The homotopy type of the unitary group of Hilbert space. Topology 3, 19–30 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  18. Madsen I., Weiss M.: The stable moduli space of Riemann surfaces: Mumford’s conjecture. Ann. of Math. (2) 165, 843–941 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Moore G., Seiberg N.: Classical and quantum field theory. Commun. Math. Phys. 123, 177–254 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Morita, S.: Structure of the mapping class group and symplectic representation theory. In: Essays on geometry and related topics, Ghys, E., De la Harpe, P., Jones, V., Sergiescu, V., eds., Vol. 2, Monogr. Enseign. Math., 38, Geneve: Univ. Geneve, 2001, pp. 577–596

  21. Morita S.: Characteristic classes of surface bundles. Invent. Math. 90, 551–577 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Neretin, Yu.A.: Categories of symmetries and infinite-dimensional groups. Translated from the Russian by G. G. Gould. London Mathematical Society Monographs, 16, Oxford: Oxford Science Publications, 1996

  23. Palais R.: On the homotopy type of certain groups of operators. Topology 3, 271–279 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  24. Penner R.C.: Universal constructions in Teichmuller theory. Adv. Math. 98, 143–215 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pressley, A., Segal, G.: Loop groups. Oxford Mathematical Monographs, Oxford: Oxford Science Publications, 1986

  26. Segal G.: Unitary representations of some infinite-dimensional groups. Commun. Math. Phys. 80, 301–342 (1981)

    Article  MATH  ADS  Google Scholar 

  27. Shale D.: Linear symmetries of free boson fields. Trans. Amer. Math. Soc. 103, 149–167 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  28. Simon, B.: Trace ideals and their applications. London Math. Soc. Lecture Notes Series, 35, Cambridge: Lond. Math. Soc., 1979

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Funar.

Additional information

Communicated by Y. Kawahigashi

L. F. was partially supported by the ANR Repsurf:ANR-06-BLAN-0311.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funar, L., Kapoudjian, C. An Infinite Genus Mapping Class Group and Stable Cohomology. Commun. Math. Phys. 287, 787–804 (2009). https://doi.org/10.1007/s00220-009-0728-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0728-1

Keywords

Navigation