Skip to main content
Log in

Inverse Spectral Problems for Schrödinger Operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article we find some explicit formulas for the semi-classical wave invariants at the bottom of the well of a Schrödinger operator. As an application of these new formulas for the wave invariants, we improve the inverse spectral results proved by Guillemin and Uribe in [GU]. They proved that under some symmetry assumptions on the potential V(x), the Taylor expansion of V(x) near a non-degenerate global minimum can be recovered from the knowledge of the low-lying eigenvalues of the associated Schrödinger operator in \({\mathbb R^n}\) . We prove similar inverse spectral results using fewer symmetry assumptions. We also show that in dimension 1, no symmetry assumption is needed to recover the Taylor coefficients of V(x).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brummelhuis R., Paul T., Uribe A.: Spectral estimates around a critical level. Duke Math. J. 78(3), 477–530 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Colin De Verdière, Y.: A semi-classical inverse problem II: reconstruction of the potential. http://arXiv.org/abs/:0802.1643, 2008

  3. Camus B.: A semi-classical trace formula at a non-degenerate critical level. (English summary) J. Funct. Anal. 208(2), 446–481 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Colin De Verdière, Y., Guillemin, V.: A semi-classical inverse problem I: Taylor expansions. http://arXiv.org/abs/:0802.1605, 2008

  5. Chazarain J.: Spectre d’un Hamiltonien quantique et méchanique classique. Comm. PDE 5, 595–644 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Duistermaat J.J.: Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math. 27, 207–281 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dimassi M., Sjöstrand J.: Spectral asymptotics in the semi-classical limit. London Mathematical Society Lecture Note Series, 268. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  8. Evans, L.C., Zworski, M.: Lectures on semiclassical analysis, Lecture notes, available at http://math.berkeley.edu/~zworski/semiclassical.pdf

  9. Guillemin V., Uribe A.: Some inverse spectral results for semi-classical Schrödinger operators. Math. Res. Lett. 14(4), 623–632 (2007)

    MATH  MathSciNet  Google Scholar 

  10. Guillemin V., Paul T., Uribe A.: “Bottom of the well” semi-classical trace invariants. Math. Res. Lett. 14(4), 711–719 (2007)

    MATH  MathSciNet  Google Scholar 

  11. Iantchenko A., Sjöstrand J., Zworski M.: Birkhoff normal forms in semi-classical inverse problems. Math. Res. Lett. 9(2-3), 337–362 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Paul T., Uribe A.: The semi-classical trace formula and propagation of wave packets. J. Funct. Anal. 132(1), 192–249 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Robert, D.: Autour de l’approximation semi-classique. (French) [On semiclassical approximation] Progress in Mathematics, 68. Boston, MA: Birkhäuser Boston, Inc., 1987

  14. Sjöstrand J.: Semi-excited states in nondegenerate potential wells. Asymptotic Anal. 6(1), 29–43 (1992)

    MATH  MathSciNet  Google Scholar 

  15. Shubin, M.A.: Pseudodifferential operators and spectral theory. Translated from the 1978 Russian original by Stig I. Andersson. Second edition. Berlin: Springer-Verlag, 2001

  16. Uribe, A.: Trace formulae. First Summer School in Analysis and Mathematical Physics (Cuernavaca Morelos, 1998), Contemp. Math. 260. Providence, RI: Amer. Math. Soc., 2000, pp. 61–90

  17. Zelditch S.: Reconstruction of singularities for solutions of Schrödinger’s equation. Commun. Math. Phys. 90(1), 1–26 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Zelditch, S.: The inverse spectral problem. With an appendix by J. Sjöstrand and M. Zworski. In: Surv. Differ. Geom. IX, Somerville, MA: Int. Press, 2004, pp. 401–467

  19. Zelditch S.: Inverse spectral problem for analytic domains. I. Balian-Bloch trace formula. Commun. Math. Phys. 248(2), 357–407 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Zelditch, S.: Inverse spectral problem for analytic plane domains II: \({\mathbb {Z}_2}\) -symmetric domains. To appear in Ann. Math. http://aiXiv.org/abs/math.SP/0111078., 2001; available at http://annals.math.princeton.edu/issues/2006/FinalFiles/Zelditdi.pdf

  21. Zelditch S.: Spectral determination of analytic bi-axisymmetric plane domains. Geom. Funct. Anal. 10(3), 628–677 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Hezari.

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hezari, H. Inverse Spectral Problems for Schrödinger Operators. Commun. Math. Phys. 288, 1061–1088 (2009). https://doi.org/10.1007/s00220-008-0718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0718-8

Keywords

Navigation