Skip to main content
Log in

Fredholm Modules on P.C.F. Self-Similar Fractals and Their Conformal Geometry

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The aim of the present work is to show how, using the differential calculus associated to Dirichlet forms, it is possible to construct non-trivial Fredholm modules on post critically finite fractals by regular harmonic structures (D, r). The modules are (d S , ∞)–summable, the summability exponent d S coinciding with the spectral dimension of the generalized Laplacian operator associated with (D, r). The characteristic tools of the noncommutative infinitesimal calculus allow to define a d S -energy functional which is shown to be a self-similar conformal invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M.F.: Global theory of elliptic operators. In: Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969), Tokyo: Univ. of Tokyo Press, 1970, pp. 21–30

  2. Barlow, M.T.: Diffusions on fractals. Lectures Notes in Mathematics 1690, Berlin-Heidelberg, New York: Springer, 1998

  3. Ben-Bassat O., Strichartz R.S., Teplayev A.: What is not in the domain of the Laplacian on Sierpinski gasket type fractals. J. Funct. Anal. 166, 197–217 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beurling A., Deny J.: Dirichlet Spaces. Proc. Nat. Acad. Sci. 45, 208–215 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Brown L.G., Douglas R.G., Fillmore P.F.: Extensions of C*-algebras and K-homology. Ann. of Math. 105, 265–324 (1977)

    Article  MathSciNet  Google Scholar 

  6. Carey A., Phillips J., Sukochev F.: Spectral Flows and Dixmier Traces. Adv. in Anal. 173(1), 68–113 (2003)

    MATH  MathSciNet  Google Scholar 

  7. Cipriani F., Sauvageot J.-L.: Derivations as square roots of Dirichlet forms. J. Funct. Anal. 201(1), 78–120 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Connes A.: The action functional in noncommutative geometry. Commun. Math. Phys. 117, 673–683 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  9. Connes A.: Noncommutative Geometry. Academic Press, London-New York (1994)

    MATH  Google Scholar 

  10. Davies E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  11. Dixmier J.: Les C*–algèbres et leurs représentations. Gauthier–Villars, Paris (1969)

    Google Scholar 

  12. Fukushima M., Shima T.: On a spectral analysis for the Sierpinki gasket. Potential Anal. 1, 1–35 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guido, D., Isola, T.: Fractals in noncommutative geometry. Fields Inst. Commun. 30, Providence, RI: Amer. Math. Soc., 2001, pp. 171–186

  14. Guido D., Isola T.: Dimensions and singular traces for spectral triples, with applications to fractals. J. Funct. Anal. 203(2), 362–400 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Guido, D., Isola, T.: Dimensions and spectral triples for fractals in \({\mathbb{R}^n}\) . In: Advances in operator algebras and mathematical physics. Theta Ser. Adv. Math., 5, Bucharest: Theta, 2005, pp. 89–108

  16. Kusuoka S.: Dirichlet forms on fractals and products of random matrices. Publ. Res. Inst. Math. Sci. 25, 659–680 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu S.H.: Fractals and their applications in condensed matter physiscs. Solid State Physics 39, 207–283 (1986)

    Google Scholar 

  18. Hino M.: On singularity of energy measures on self-similar sets. Probab. Th. Rel. Fields 132, 265–290 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kasparov G.: Topological invariants of elliptic operators, I. K-homology. Math. SSSR Izv. 9, 751–792 (1975)

    Article  MathSciNet  Google Scholar 

  20. Kigami, J.: Analysis on Fractals. Cambridge Tracts in Mathematics. vol. 143, Cambridge: Cambridge University Press, 2001

  21. Kigami J., Lapidus M.: Self-Similarity of the volume measure for laplacians on p.c.f. self-similar fractals. Comm. Math. Phys. 217, 165–180 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Mishchenko A.S.: Infinite-dimensional representations of discrete groups and higher signatures. Math. SSSR Izv. 8, 85–112 (1974)

    Article  Google Scholar 

  23. Pedersen, G.K.: C*-algebras and their automorphisms groups. Lecture Note Series vol. 35, Cambridge: Cambridge University Press, 1979

  24. Rammal R., Toulouse G.: Random walks on fractal structures and percolation clusters. J. Phys. Lett. 44, L13–L22 (1983)

    Article  Google Scholar 

  25. Simon, B.: Trace ideals and their applications. Lecture Note Series vol. 35, Cambridge: Cambridge University Press, 1979

  26. Sturm K.-Th: Analysis on local Dirichlet spaces—Recurrence, conservativeness and l p-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1995)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Cipriani.

Additional information

Communicated by A. Connes

Thiswork has been supported by the project “Teoria ellittica e forme di Dirichlet su spazi frattali” G.N.A.M.P.A. 2008 and by the G.R.E.F.I.-G.E.N.C.O. French-Italian Research Group.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cipriani, F., Sauvageot, JL. Fredholm Modules on P.C.F. Self-Similar Fractals and Their Conformal Geometry. Commun. Math. Phys. 286, 541–558 (2009). https://doi.org/10.1007/s00220-008-0673-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0673-4

Keywords

Navigation