Skip to main content
Log in

Finite-Time Singularities of an Aggregation Equation in \({\mathbb {R}^n}\) with Fractional Dissipation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider an aggregation equation in \({\mathbb {R}^n}\), n ≥ 2 with fractional dissipation, namely, \({u_t + \nabla\cdot(u \nabla K*u)=-\nu (-\Delta)^{\gamma/2} u}\), where 0 ≤ γ < 1 and K is a nonnegative decreasing radial kernel with a Lipschitz point at the origin, e.g. K(x) = e −|x|. We prove that for a class of smooth initial data, the solutions develop blow-up in finite time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aldana M., Huepe C.: Phase transitions in self-driven many-particle systems and related non-equilibrium models: A network approach. J. Stat. Phys. 112, 135–153 (2003)

    Article  MATH  Google Scholar 

  2. Alvarez L., Mazorra L.: Signal and image restoration using shock filters and anisotropic diffusion. SIAM J. Numer. Anal. 31(2), 590–605 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertozzi A.L., Laurent T.: Finite-Time blow up of solutions of an aggregation equation in \({\mathbb{R}^n}\). Commun. Math. Phys. 274, 717–735 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94(1), 61–66 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Bodnar M., Velázquez J.J.L.: Derivation of macroscopic equations for individual cell-based model: a formal approach. Math. Methods Appl. Sci. 28(25), 1757–1779 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bodnar M., Velázquez J.J.L.: An integrodifferential equation arising as a limit of individual cell-based models. J. Differ. Eqs. 222(2), 341–380 (2006)

    Article  MATH  Google Scholar 

  7. Burger, M., Di Francesco M.: Large time behaviour of nonlocal aggregation models with nonlinear diffusion. Johann Radon Institute for Computational and Applied Mathematics. Austrian Academy of Sciences, RICAM-Report No. 2006-15, available at http://www.ricam.oeaw.ac.at/publications/reports/06/rep06-15.pdf, 2006

  8. Burger M., Capasso V., Morale D.: On an aggregation equation model with long and short range interactions. Nonlinear Anal. Real World Appl. 8(3), 939–958 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Córdoba A., Córdoba D., Fontelos M.: Formation of singularities for a transport equation with nonlocal velocity. Ann. of Math. (2) 162(3), 1377–1389 (2005)

    MATH  MathSciNet  Google Scholar 

  10. Constantin, P., Córdoba, D., Wu, J.: On the critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 50, Special Issue, 97–107 (2001)

  11. Couzin I.D., Krause J., James R., Ruxton G.D., Franks N.R.: Collective memory and spatial sorting in animal groups. J. Theoret. Biol. 218, 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  12. Dong H., Li D.: Finite time singularities for a class of generalized surface quasi-geostrophic equations. Proc. of Amer. Math. Soc. 136, 2555–2563 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Erdmann U., Ebeling W.: Collective motion of Brownian particles with hydrodynamics interactions. Fluct. Noise Lett. 3, L145–L154 (2003)

    Article  Google Scholar 

  14. Erdmann, U., Ebeling, W., Anishchenko, V.S.: Excitation of rotational models in two-dimensional systems of driven Brownian particles. Phys. Rev. E 65, paper 061106 (2002)

    Google Scholar 

  15. Edelstein-Keshet, L.: Mathematical models of swarming and social aggregation. In: Proceedings of the 2001 International Symposium on Nonlinear Theory and Its Applications, (Miyagi, Japan, 2001), available at http://www.math.ubc.ca/people/faculty/keshet/pubs/nolta2001.pdf, 2001

  16. Edelstein-Keshet L., Watmough J., Grünbaum D.: Do travelling band solutions describe cohesive swarms? An investigation for migratory locusts. J. Math. Biol. 36, 515–549 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Flierl G., Grünbaum D., Levin S., Olson D.: From individuals to aggregations: The interplay between behavior and physics. J. Theoret. Biol. 196, 397–45 (1999)

    Article  Google Scholar 

  18. Holmes E., Lewis M.A., Banks J., Veit R.: PDE in ecology: spatial interactions and population dynamics. Ecology 75(1), 17–29 (1994)

    Article  Google Scholar 

  19. Hosono Y., Mimura M.: Localized cluster solutions of nonlinear degenerate diffusion equations arising in population dynamics. Siam. J. Math. Anal. 20, 845–869 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ikeda T.: Stationary solutions of a spatially aggregating population model. Proc. Jpn. Acad. A 60, 46–48 (1984)

    Article  MATH  Google Scholar 

  21. Ikeda T.: Standing pulse-like solutions of a spatially aggregating population model. Jpn. J. Appl. Math. 2, 111–149 (1985)

    MATH  Google Scholar 

  22. Ikeda T., Nagai T.: Stability of localized stationary solutions. Jpn. J. Appl. Math. 4, 73–97 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kawasaki K.: Diffusion and the formation of spatial distributions. Math. Sci. 16, 47–52 (1978)

    Google Scholar 

  24. Laurent T.: Local and global existence for an aggregation equation. Comm. PDE 32, 1941–1964 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lemarié-Rieusset, P.: Recent developments in the Navier-Stokes problem. Boca Raton, fli: Chapman & Hall/CRC Press, 2002

  26. Levine, H., Rappel, W.J., Cohen, I.: Self-organization in systems of self-propelled particles. Phys. Rev. E 63, paper 017101 (2001)

    Google Scholar 

  27. Li D., Rodrigo J.: Blow up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation. Adv. Math. 217, 2563–2568 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Li, D., Rodrigo, J.: Well-posedness and regularity of solutions of an aggregation equation. In preparation

  29. Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow. Texts Appl. Math. Cambridge: Cambridge University Press, 2002

  30. Mogilner A., Edelstein-Keshet L., Bent L., Spiros A.: Mutual interactions, potentials, and individual distance in a social aggregation. J. Math. Biol. 47, 353–389 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mogilner A., Edelstein-Keshet L.: A non-local model for a swarm. J. Math. Biol. 38, 534–570 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Murray, J.D.: Mathematical Biology I: An Introduction. 3rd ed., Interdiscip. Appl. Math. 17, New York: Springer, 2002

  33. Mimura M., Yamaguti M.: Pattern formation in interacting and diffusing systems in population biology. Adv. Biophys. 15, 19–65 (1982)

    Article  Google Scholar 

  34. Nagai T., Mimura M.: Asymptotic behavior for a nonlinear degenerate diffusion equation in population dynamics. Siam J. Appl. Math. 43, 449–464 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  35. Okubo A.: Diffusion and Ecological Problems. Springer, New York (1980)

    MATH  Google Scholar 

  36. Okubo, A., Grunbaum, D., Edelstein-Keshet, L.: The dynamics of animal grouping. In: Diffusion and Ecological Problems, 2nd ed., Okubo, A., Levin, S. eds., Interdiscip. Appl. Math. 14, New York: Springer, 1999, pp. 197–237

  37. Osher S., Rudin L.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27(4), 919–940 (1990)

    Article  MATH  Google Scholar 

  38. dal Passo R., Demotoni P.: Aggregative effects for a reaction-advection equation. J. Math. Biol. 20, 103–112 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  39. Parrish J.K., Edelstein-Keshet L.: Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284, 99–101 (1999)

    Article  ADS  Google Scholar 

  40. Parrish J.K., Hamner W.: Animal groups in three dimensions. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  41. Schweitzer, F., Ebeling, W., Tilch, B.: Statistical mechanics of canonical-dissipative systems and applications to swarm dynamics. Phys. Rev. E 64, paper 021110 (2001)

    Google Scholar 

  42. Topaz C.M., Bertozzi A.L., Lewis M.A.: A nonlocal continuum model for biological aggregation. Bull. Math. Bio. 68(7), 1601–1623 (2006)

    Article  MathSciNet  Google Scholar 

  43. Topaz C.M., Bertozzi A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl Math. 65(1), 152–174 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  44. Toner J., Tu Y.: Flocks, herds, and schools: A quantitative theory of flocking. Phys. Rev. E 58, 4828–4858 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  45. Vicsek T., Czirók A., Ben-Jacob E., Cohen I., Schochet O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  ADS  Google Scholar 

  46. Vicsek T., Czirók A., Farkas I.J., Helbing D.: Application of statistical mechanics to collective motion in biology. Phys. A 274, 182–189 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Rodrigo.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Rodrigo, J. Finite-Time Singularities of an Aggregation Equation in \({\mathbb {R}^n}\) with Fractional Dissipation. Commun. Math. Phys. 287, 687–703 (2009). https://doi.org/10.1007/s00220-008-0669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0669-0

Keywords

Navigation