Skip to main content
Log in

The Probability of Entanglement

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that states on tensor products of matrix algebras whose ranks are relatively small are almost surely entangled, but that states of maximum rank are not. More precisely, let \(M = M_m(\mathbb{C})\) and \({N=M_n(\mathbb C)}\) be full matrix algebras with m ≥  n, fix an arbitrary state ω of N, and let E(ω) be the set of all states of \({M\otimes N}\) that extend ω. The space E(ω) contains states of rank r for every r = 1, 2, . . . , m · rank ω, and it has a filtration into compact subspaces

$$E^1(\omega)\subseteq E^2(\omega)\subseteq \cdots\subseteq E^{m\cdot{\rm rank}\,\omega}=E(\omega),$$

where E r(ω) is the set of all states of E(ω) having rank  ≤  r.

We show first that for every r, there is a real-analytic manifold V r, homogeneous under a transitive action of a compact group G r, which parameterizes E r(ω). The unique G r-invariant probability measure on V r promotes to a probability measure P r,ω on E r(ω), and P r,ω assigns probability 1 to states of rank r. The resulting probability space (E r(ω),P r,ω) represents “choosing a rank r extension of ω at random”.

Main result: For every r = 1, 2, . . . , [rank ω/2], states of (E r(ω),P r,ω) are almost surely entangled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arveson W.: Subalgebras of C *-algebras. Acta Math. 123, 141–224 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arveson W.: Noncommutative Dynamics and E-semigroups. Monographs in Mathematics. Springer-Verlag, New York (2003)

    Google Scholar 

  3. Arveson, W.: Quantum channels that preserve entanglement. Preprint, http://arXiv.org/abs/0801.2531v2[math.OA], 2008

  4. Aubrun G., Szarek S.: Tensor products of convex sets and the volume of separable states on N qubits. Phys. Rev. A 73, 022109 (2006)

    Article  ADS  Google Scholar 

  5. Braunstein S., Caves C., Jozsa R., Linden N., Popescu S., Schack R.: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054– 1057 (1999)

    Article  ADS  Google Scholar 

  6. Carathéodory C.: Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann. 64, 95–115 (1907)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carathéodory C.: Über den Variabilitätsbereich der Fourier’shen Konstanten von positiven harmonischen Functionen. Rend. Circ. Mat. Palermo 32, 193–217 (1911)

    Article  MATH  Google Scholar 

  8. Dieudonné J.: Foundations of modern analysis. Third printing. Academic Press, New York (1969)

    Google Scholar 

  9. Gurvits, L., Barnum, H.: Largest separable ball around the maximally mixed bipartite quantum state. Phys. Rev. A 66, no. 062311 (2002)

    Google Scholar 

  10. Gurvits L., Barnum H.: Better bound on the exponent of the radius of the multipartite separable ball. Phys. Rev. A 72, 032322 (2005)

    Article  ADS  Google Scholar 

  11. Horodecki M., Horodecki P., Horodecki H.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. http://arXiv.org/abs/quant-ph/0702225v2[quant-ph], 2007

  13. Hayden P., Leung D., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265, 95–117 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Horodecki R., Shor P., Ruskai M.B.: Entanglement breaking channels. Rev. Math. Phys. 15(6), 629–641 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lockhart R.: Optimal ensemble length of mixed separable states. J. Math. Phys. 41(10), 6766–6771 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Landau L.J., Streater R.F.: On Birkhoff’s theorem for doubly stochastic completely positive maps of matrix algebras. Lin. Alg. Appl. 193, 107–127 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Parthasarathy K.R.: On the maximal dimension of a completely entangled subspace for finite level quantum systems. Proc. Indian Acad. Sci. (Math. Sci.) 114(4), 365–374 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Parthasarathy K.R.: Extremal quantum states in coupled systems. Ann. Inst. H. Poincaré 41, 257–268 (2005)

    Article  MATH  ADS  Google Scholar 

  19. Peres A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413–1415 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Perez-Garcia D., Wolf M., Palazuelos C., Villanueva I., Junge M.: Unbounded violation of tripartite bell inequalities. Commun. Math. Phys. 279, 455–486 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Pittenger A., Rubin M.: Convexity and the separability problem for density matrices. Lin. Alg. Appl. 346, 47–71 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Price G., Sakai S.: Extremal marginal tracial states in coupled systems. Operators and Matrices 1, 153–163 (2007)

    MATH  MathSciNet  Google Scholar 

  23. Størmer, E.: Separable states and positive maps. http://arXiv/abs/0710.3071v2[math.OA], 2007

  24. Sanpera A., Terrach R., Vidal G.: Local description of quantum inseparability. Phys. Rev. A 58(2), 826–830 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  25. Szarek S.: The volume of separable states is super doubly exponentially small. Phys. Rev. A 72, 032309 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  26. Uhlmann A.: Entropy and optimal decompositions of states relative to a maximal commutative subalgebra. Open Sys. Info. Dyn. 5(3), 209–227 (1998)

    Article  MATH  Google Scholar 

  27. Werner R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277–4281 (1989)

    Article  ADS  Google Scholar 

  28. Zyczkowski K., Horodecki P., Lewenstein M., Sanpera A.: Volume of the set of separable states. Phys. Rev. A 58(2), 883–892 (1998)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Arveson.

Additional information

Communicated by M. B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arveson, W. The Probability of Entanglement. Commun. Math. Phys. 286, 283–312 (2009). https://doi.org/10.1007/s00220-008-0661-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0661-8

Keywords

Navigation