Skip to main content

Advertisement

Log in

Optimal Concentration for SU(1, 1) Coherent State Transforms and An Analogue of the Lieb-Wehrl Conjecture for SU(1, 1)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive a lower bound for the Wehrl entropy in the setting of SU(1, 1). For asymptotically high values of the quantum number k, this bound coincides with the analogue of the Lieb-Wehrl conjecture for SU(1, 1) coherent states. The bound on the entropy is proved via a sharp norm bound. The norm bound is deduced by using an interesting identity for Fisher information of SU(1, 1) coherent state transforms on the hyperbolic plane \({\mathbb{H}^{2}}\) and a new family of sharp Sobolev inequalities on \({\mathbb{H}^{2}}\). To prove the sharpness of our Sobolev inequality, we need to first prove a uniqueness theorem for solutions of a semi-linear Poisson equation (which is actually the Euler-Lagrange equation for the variational problem associated with our sharp Sobolev inequality) on \({\mathbb{H}^{2}}\). Uniqueness theorems proved for similar semi-linear equations in the past do not apply here and the new features of our proof are of independent interest, as are some of the consequences we derive from the new family of Sobolev inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baernstein A., Taylor B.A.: Spherical Rearrangement, Subharmonic Functions and *-functions in n-space. Duke Math. J. 43(2), 245–268 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bargmann V.: Irreducible Unitary Representations of the Lorentz Group. Ann. Math. 48(3), 568–640 (1947)

    Article  MathSciNet  Google Scholar 

  3. Beckner, W.: Sharp Inequalities and Geometric Manifolds. J. Fourier Anal. Appl. 3, Special Issue, 825–836 (1997)

  4. Beckner W.: Geometric Asymptotics and the Logarithmic Sobolev Inequality. Forum Math. 11, 105–137 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berestycki H., Lions P.L., Peletier L.A.: An ODE approach to the Existence of Positive Solutions for Semilinear problems in r n. Indiana U. Math. J. 30, 141–167 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bodmann B.G.: A Lower Bound for the Wehrl Entropy of Quantum Spin with Sharp High-Spin Asymptotics. Commun. Math. Phys. 250, 287–300 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Carlen E.A.: Some Integral Identities and Inequalities for Entire Functions and Their Application to the Coherent State Transform. J. Funct. Anal. 97(1), 231–249 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gross L.: Logarithmic Sobolev Inequalities. Amer. J. Math. 97, 1061–1083 (1975)

    Article  MathSciNet  Google Scholar 

  9. Gross L.: Hypercontractivity over Complex Manifolds. Acta Math. 182(2), 159–206 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gnutzmann S., Zyckzkowski K.: Renyi-Wehrl Entropies as Measures of Localization in Phase Space. J. Phys. A: Math. Gen. 34, 10123–10139 (2001)

    Article  MATH  ADS  Google Scholar 

  11. Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. CIMS Lecture Notes, Newyork: Courant Institute of Mathematical Sciences, 1999

  12. Ince E.L.: Ordinary Differential Equations. Dover Publications, Newyork (1944)

    MATH  Google Scholar 

  13. Kwong M.K.: Uniqueness of Positive Radial Solutions of Δu − u + u p = 0 in \({\mathbb{R}^{n}}\). Arch. Rat. Mech. Anal. 105, 243–266 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lieb E.H.: Proof of an Entropy Conjecture of Wehrl. Commun. Math. Phys. 62, 35–41 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. McLeod K., Serrin J.: Uniqueness of positive radial solutions of Δu + f(u) = 0 in r n. Arch. Rat. Mech. Anal. 99, 115–145 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Peletier L.A., Serrin J.: Uniqueness of Positive Solutions of Semilinear Equations in \({\mathbb{R}^{n}}\). Arch. Rat. Mech. Anal. 81, 181–197 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Peletier L.A., Serrin J.: Uniqueness of non-negative solutions of semilinear equations in \({\mathbb{R}^{n}}\). J. Diff. Eqs. 61, 380–397 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Perelomov, A.: Generalized Coherent States and Their Applications. Texts and Monographs in Physics, Berlin-Heidelberg-Newyork: Springer-Verlag, 1986

  19. Rothaus O.: Diffusion on Compact Riemannian Manifolds and Logarithmic Sobolev Inequalities. J. Funct. Anal. 42, 358–367 (1981)

    Google Scholar 

  20. Schupp P.: On Lieb’s Conjecture for the Wehrl Entropy of Bloch Coherent States. Commun. Math. Phys. 207(2), 481–493 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Wehrl A.: On the Relation between Classical and Quantum-mechanical Entropy. Rep. Math. Phys. 16(3), 353–358 (1979)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jogia Bandyopadhyay.

Additional information

Communicated by M.B. Ruskai

Work partially supported by U.S. National Science Foundation grant DMS 06-00037.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, J. Optimal Concentration for SU(1, 1) Coherent State Transforms and An Analogue of the Lieb-Wehrl Conjecture for SU(1, 1). Commun. Math. Phys. 285, 1065–1086 (2009). https://doi.org/10.1007/s00220-008-0618-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0618-y

Keywords

Navigation