Skip to main content
Log in

Poisson Sigma Model on the Sphere

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We evaluate the path integral of the Poisson sigma model on the sphere and study the correlators of quantum observables. We argue that for the path integral to be well-defined the corresponding Poisson structure should be unimodular. The construction of the finite dimensional BV theory is presented and we argue that it is responsible for the leading semiclassical contribution. For a (twisted) generalized Kähler manifold we discuss the gauge fixed action for the Poisson sigma model. Using the localization we prove that for the holomorphic Poisson structure the semiclassical result for the correlators is indeed the full quantum result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov M., Kontsevich M., Schwartz A., Zaboronsky O.: The Geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 12, 1405 (1997)

    Article  MATH  ADS  Google Scholar 

  2. Barannikov S., Kontsevich M.: Frobenius manifolds and formality of Lie algebras of polyvector fields. Internat. Math. Res. Notices 4, 201 (1998)

    Article  MathSciNet  Google Scholar 

  3. Batalin I.A., Vilkovisky G.A.: Relativistic S matrix of dynamical systems with Boson and Fermion constraints. Phys. Lett. B 69, 309 (1977)

    Article  ADS  Google Scholar 

  4. Bergamin L., Grumiller D., Kummer W., Vassilevich D.V.: Classical and quantum integrability of 2D dilaton gravities in Euclidean space. Class. Quant. Grav. 22, 1361 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Calvo I.: Supersymmetric WZ-Poisson sigma model and twisted generalized complex geometry. Lett. Math. Phys. 77, 53 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Cattaneo A.S., Felder G.: A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212, 591 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Cattaneo A.S., Felder G.: On the AKSZ formulation of the Poisson sigma model. Lett. Math. Phys. 56, 163 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cattaneo, A.S.: From Topological Field Theory to Deformation Quantization and Reduction. Proceedings of ICM 2006, Vol. III, Zurich: European Mathematical Society, 2006, pp. 339–365

  9. Dolgushev, V.: The Van den Bergh duality and the modular symmetry of a Poisson variety. http://arXiv.org/list/math/0612288, 2006

  10. Evens S., Lu J.-H.: Poisson harmonic forms, Kostant harmonic forms, and the S 1-equivariant cohomology of K/T. Adv. Math. 142, 171 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Evens, S., Lu, J.-H., Weinstein, A.: Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford Ser. 2. 50(200), 417–436 (1999)

    Google Scholar 

  12. Felder G., Shoikhet B.: Deformation quantization with traces. Lett. Math. Phys. 53(1), 75–86 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fiorenza, D.: An introduction to the Batalin-Vilkovisky formalism, Comptes Rendus des Rencontres Mathematiques de Glanon, Edition 2003

  14. Frenkel E., Losev A.: Mirror symmetry in two steps: A-I-B. Commun. Math. Phys. 269, 39 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Gualtieri, M.: Generalized Complex Geometry. Oxford University, DPhil thesis, 2004, avaible at http://arXiv.org/list/math.DG/0401221, 2004

  16. Gualtieri, M.: Generalized Complex Geometry. http://arXiv.org/list/math.DG/0703298, 2007

  17. Gualtieri, M.: Branes on Poisson varieties. http://arXiv.org/abs/0710.2719v1[math.DG], 2007

  18. Henneaux, M., Teitelboim, C.(1992). Quantization of Gauge Systems. Princeton Series in Physics, Princeton, NJ: Princeton Univ. Press, 1992

  19. Hirshfeld, A.C., Schwarzweller, T.: The partition function of the linear Poisson-sigma model on arbitrary surfaces. http://arXiv.org/list/hep-th/0112086, 2001

  20. Hitchin N.: Generalized Calabi-Yau manifolds. Quart. J. Math. Oxford Ser. 54, 281 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hitchin N.: Instantons, Poisson structures and generalized Kaehler geometry. Commun. Math. Phys. 265, 131 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Hitchin, N.: Bihermitian metrics on Del Pezzo surfaces. http://arXiv.org/list/math.DG/0608213, 2006

  23. Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror symmetry. Providence, RI: Amer Math. Soc., 2003

  24. Ikeda N.: Two-dimensional gravity and nonlinear gauge theory. Annals Phys. 235, 435 (1994)

    Article  MATH  ADS  Google Scholar 

  25. Kapustin A.: Topological strings on noncommutative manifolds. Int. J. Geom. Meth. Mod. Phys. 1, 49 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kapustin, A., Li, Y.: Topological sigma-models with H-flux and twisted generalized complex manifolds. http://arXiv.org/list/hep-th/0407249, 2004

  27. Kosmann-Schwarzbach Y.: Exact Gerstenhaber algebras and Lie bialgebroids. Acta Appl. Math. 41, 153–165 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kosmann-Schwarzbach, Y.: Modular vector fields and Batalin-Vilkovisky algebras. In: Poisson geometry (Warsaw, 1998), Banach Center Publ. 51, Warsaw: Polish Acad. Sci., 2000, pp. 109–129

  29. Kosmann-Schwarzbach Y., Monterde J.: Divergence operators and odd Poisson brackets. Ann. Inst. Fourier (Grenoble) 52(2), 419–456 (2002)

    MATH  MathSciNet  Google Scholar 

  30. Koszul, J.-L.: Crochet de Schouten-Nijenhuis et cohomologie. In: The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque 1985, Numero Hors Serie, 257–271, (1985)

  31. Krotov, D., Losev, A.: Quantum field theory as effective BV theory from Chern-Simons. http://arXiv.org/list/hep-th/0603201, 2006

  32. Kummer W., Liebl H., Vassilevich D.V.: Exact path integral quantization of generic 2-D dilaton gravity. Nucl. Phys. B 493, 491 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Laurent-Gengoux, C., Stienon, M., Xu, P.: Holomorphic Poisson Structures and Groupoids. http://arXiv.org/list/0707.4253v4[math.DG], 2007, to appear in Intl. Math. Res. Notices

  34. Li, Y.: On deformations of generalized complex structurs: The generalized Calabi-Yau case. http://arXiv.org/list/hep-th/0508030, 2005

  35. Lu Z.J., Weinstein A., Xu P.: Manin Triples for Lie Bialgebroids. J. Diff. Geom. 45, 547 (1997)

    Google Scholar 

  36. Lyakhovich S.L., Sharapov A.A.: Characteristic classes of gauge systems. Nucl. Phys. B 703, 419 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Lyakhovich S., Zabzine M.: Poisson geometry of sigma models with extended supersymmetry. Phys. Lett. B 548, 243 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Manin, Yu.I.: Three constructions of Frobenius manifolds: a comparative study, In:Surveys in differential geometry, 497–554, Surv. Differ. Geom., VII, Somerville, MA: Int. Press, 2000, pp. 497–554

  39. Manin, Yu.I.: Frobenius manifolds, quantum cohomology, and moduli spaces. American Mathematical Society Colloquium Publications 47, Providence, RI: American Mathematical Society, 1999

  40. Mnev, P.: Notes on simplicial BF theory. http://arXiv.org/list/hep-th/0610326, 2006

  41. Pestun V.: Topological strings in generalized complex space. Adv. Theor. Math. Phys. 11, 399 (2007)

    MATH  MathSciNet  Google Scholar 

  42. Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids. In: Quantization, Poisson Brackets and Beyond, Theodore Voronov (ed.), Contemp. Math., Vol. 315, Providence, RI: Amer. Math. Soc., 2002

  43. Schaller P., Strobl T.: Poisson structure induced (topological) field theories. Mod. Phys. Lett. A 9, 3129 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. Schwarz A.S.: Geometry of Batalin-Vilkovisky quantization. Commun. Math. Phys. 155, 249 (1993)

    Article  MATH  ADS  Google Scholar 

  45. Vaisman, I.: Lectures on the geometry of Poisson manifolds. Progress in Mathematics, 118. Basel: Birkhauser Verlag, 1994

  46. Weinstein A.: The modular automorphism group of Poisson manifolds. J. Geom. Phys. 23, 379 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. Witten E.: Topological Sigma Models. Commun. Math. Phys. 118, 411 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. Witten, E.: Mirror manifolds and topological field theory. http://arXiv.org/list/hep-th/9112056, 1991

  49. Xu P.: Gerstenhaber algebras and BV-algebras in Poisson geometry. Commun. Math. Phys. 200, 545 (1999)

    Article  MATH  ADS  Google Scholar 

  50. Zabzine M.: Lectures on generalized complex geometry and supersymmetry. Archivum mathematicum (supplement) 42, 119–146 (2006)

    MATH  MathSciNet  Google Scholar 

  51. Zucchini R.: A sigma model field theoretic realization of Hitchin’s generalized complex geometry. JHEP 0411, 045 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  52. Zucchini R.: A topological sigma model of biKaehler geometry. JHEP 0601, 041 (2006)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Zabzine.

Additional information

Communicated by N.A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonechi, F., Zabzine, M. Poisson Sigma Model on the Sphere. Commun. Math. Phys. 285, 1033–1063 (2009). https://doi.org/10.1007/s00220-008-0615-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0615-1

Keywords

Navigation