Skip to main content
Log in

Quantisation of Twistor Theory by Cocycle Twist

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present the main ingredients of twistor theory leading up to and including the Penrose-Ward transform in a coordinate algebra form which we can then ‘quantise’ by means of a functorial cocycle twist. The quantum algebras for the conformal group, twistor space \({\mathbb {CP}^3}\) , compactified Minkowski space \({\mathbb {CM}^\#}\) and the twistor correspondence space are obtained along with their canonical quantum differential calculi, both in a local form and in a global *-algebra formulation which even in the classical commutative case provides a useful alternative to the formulation in terms of projective varieties. We outline how the Penrose-Ward transform then quantises. As an example, we show that the pull-back of the tautological bundle on \({{\mathbb {CM}^\#}}\) pulls back to the basic instanton on \({S^4\subset{\mathbb {CM}^\#}}\) and that this observation quantises to obtain the Connes-Landi instanton on θ-deformed S 4 as the pull-back of the tautological bundle on our θ-deformed \({{\mathbb {CM}^\#}}\) . We likewise quantise the fibration \({{\mathbb {CP}^3} \rightarrow S^4}\) and use it to construct the bundle on θ-deformed \({{\mathbb {CP}^3}}\) that maps over under the transform to the θ-deformed instanton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.F., Drinfel’d V.G., Hitchin N.J., Manin Y.I.: Construction of Instantons. Phys. Lett. 65(3), 185–187 (1978)

    Article  MathSciNet  Google Scholar 

  2. Atiyah, M.F.: Geometry of Yang-Mills Fields. Fermi Lectures, Scuola Normale Pisa, 1979

  3. Barth W.: Moduli of Vector Bundles on the Projective Plane. Invent. Math. 42, 63–91 (1977)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Baston R.J., Eastwood M.G.: The Penrose Transform: Its Interaction with Representation Theory. Oxford University Press, Oxford (1989)

    MATH  Google Scholar 

  5. Brain, S.J.: The Noncommutative Penrose-Ward Transform and Self-Dual Yang-Mills Fields. DPhil Thesis, University of Oxford, 2005

  6. Connes A., Landi G.: Noncommutative Manifolds, the Instanton Algebra and Isospectral Deformations. Commun. Math. Phys. 221, 141–159 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Eastwood M.G.: The Generalized Penrose-Ward Transform. Math. Proc. Camb. Phil. Soc. 97, 165–187 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Majid S., Hajac P.: Projective Module Description of the q-Monopole. Commun. Math. Phys. 206, 246–264 (1999)

    MathSciNet  Google Scholar 

  9. Hannabuss K.C.: Noncommutative Twistor Space. Lett. Math. Phys. 58(2), 153–166 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kapustin A., Kuznetsov A.: D. Orlov. Noncommutative Instantons and Twistor Transform. Commun. Math. Phys. 221(2), 385–432 (2001)

    MATH  MathSciNet  Google Scholar 

  11. Landi G., van Suijlekom W.D.: Principal Fibrations from Noncommutative Spheres. Comm. Math. Phys. 260, 203–225 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Majid S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  13. Majid S., Oeckl R.: Twisting of Quantum Differentials and the Planck Scale Hopf Algebra. Commun. Math. Phys. 205, 617–655 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Majid S.: Noncommutative Riemannian and Spin Geometry of the Standard q-Sphere. Commun. Math. Phys. 256, 255–285 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Mason L.J., Woodhouse N.M.J.: Integrability, Self-Duality and Twistor Theory. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  16. Nekrasov N.A., Schwarz A.: Instantons on Noncommutative \({\mathbb {R}^4}\) and (2,0) Superconformal Six Dimensional Theory. Commun. Math. Phys. 198(3), 689–703 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Okonek C., Schneider M., Spindler H.: Vector Bundles on Complex Projective Spaces. Birkhauser, Boston (1980)

    MATH  Google Scholar 

  18. Penrose R., Rindler W.: Spinors and Space-Time, Vol. 2. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  19. Seiberg N., Witten E.: String Theory and Noncommutative Geometry. JHEP 9909(9), 32 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ward R.S.: On Self-Dual Gauge Fields. Phys. Lett. 61((2), 81–82 (1977)

    MathSciNet  Google Scholar 

  21. Ward R.S., Wells R.O. Jr.: Twistor Geometry and Field Theory. Cambridge University Press, Cambridge (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Brain.

Additional information

Communicated by A. Connes

The work was mainly completed while S.M. was visiting July-December 2006 at the Isaac Newton Institute, Cambridge, which both authors thank for support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brain, S.J., Majid, S. Quantisation of Twistor Theory by Cocycle Twist. Commun. Math. Phys. 284, 713–774 (2008). https://doi.org/10.1007/s00220-008-0607-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0607-1

Keywords

Navigation