Skip to main content
Log in

On Asymptotic Stability in Energy Space of Ground States for Nonlinear Schrödinger Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider nonlinear Schrödinger equations

$$iu_t +\Delta u +\beta (|u|^2)u=0\, ,\, \text{for} (t,x)\in \mathbb{R}\times \mathbb{R}^d,$$

where d ≥ 3 and β is smooth. We prove that symmetric finite energy solutions close to orbitally stable ground states converge to a sum of a ground state and a dispersive wave as t → ∞ assuming the so called the Fermi Golden Rule (FGR) hypothesis. We improve the “sign condition” required in a recent paper by Gang Zhou and I.M.Sigal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Geometrical methods in the theory of ordinary differential equations. Grundlehren der Mathematischen Wissenschaften 250, New York: Springer-Verlag, 1983

  2. Buslaev V.S., Perelman G.S.: Scattering for the nonlinear Schrödinger equation: states close to a soliton. St. Petersburg Math. J. 4, 1111–1142 (1993)

    MathSciNet  Google Scholar 

  3. Buslaev, V.S., Perelman, G.S.: On the stability of solitary waves for nonlinear Schrödinger equations. In: Nonlinear evolution equations, N.N. Uraltseva, ed. Transl. Ser. 2, 164, Providence, RI: Amer. Math. Soc., 1995, pp 75–98

  4. Buslaev V.S., Sulem C.: On the asymptotic stability of solitary waves of Nonlinear Schrödinger equations. Ann. Inst. H. Poincaré. An. Nonlin. 20, 419–475 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Cazenave, T.: Semilinear Schrodinger equations. Courant Lecture Notes in Mathematics 10, New York University, Courant Institute of Mathematical Sciences, Providence, RI: Amer. Math. Soc., 2003

  6. Cazenave T., Lions P.L.: Orbital stability of standing waves for nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Cuccagna, S.: Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure App. Math. 54, 1110–1145 (2001); Comm. Pure Appl. Math. 58, 147 (2005)

  8. Cuccagna S.: On asymptotic stability of ground states of NLS. Rev. Math. Phys. 15, 877–903 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cuccagna, S.: Dispersion for Schrödinger equation with periodic potential in 1D. To appear J. Diff. Eq.

  10. Cuccagna, S.: On instability of excited states of the nonlinear Schrödinger equation. http://arxiv.org/abs/0801.4237v2[math.AP], 2008

  11. Cuccagna S., Pelinovsky D.: Bifurcations from the endpoints of the essential spectrum in the linearized nonlinear Schrodinger problem. J. Math. Phys. 46, 053520 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. Cuccagna S., Pelinovsky D., Vougalter V.: Spectra of positive and negative energies in the linearization of the NLS problem. Comm. Pure Appl. Math. 58, 1–29 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cuccagna, S., Tarulli, M.: On asymptotic stability in energy space of ground states of NLS in 2D. http://arxiv.org/abs/0801.1277v1[math.AP], 2008

  14. Dancer E.N.: A note on asymptotic uniqueness for some nonlinearities which change sign. Bull. Austral. Math. Soc. 61, 305–312 (2000)

    MATH  MathSciNet  Google Scholar 

  15. Fibich G., Wang X.P.: Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities. Physica D 175, 96–108 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Grillakis M., Shatah J., Strauss W.: Stability of solitary waves in the presence of symmetries, I. J. Funct. An. 74, 160–197 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Grillakis M., Shatah J., Strauss W.: Stability of solitary waves in the presence of symmetries, II. Jour. Funct. An. 94, 308–348 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gustafson S., Nakanishi K., Tsai T.P.: Asymptotic Stability and Completeness in the Energy Space for Nonlinear Schrödinger Equations with Small Solitary Waves. Int. Math. Res. Notices 66, 3559–3584 (2004)

    Article  MathSciNet  Google Scholar 

  19. Kabeya Y., Tanaka K.: Uniqueness of positive radial solutions of semilinear elliptic equations in R N and Sere’s non-degeneracy condition. Comm. Partial Differ. Eqs. 24, 563–598 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Keel M., Tao T.: Endpoint Strichartz estimates. Amer. J. Math. 120, 955–980 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kwong M.K.: Uniqueness of positive solutions of Δu  − u + u p = 0 in \({\mathbb{R}^n}\) . Arch. Rat. Mech. Anal. 105, 243–266 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. McLeod K.: Uniqueness of positive radial solutions of Δu + f(u) = 0 in \({\mathbb{R}^n}\) , II. Trans. Amer. Math. Soc. 339, 495–505 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mizumachi, T.: Asymptotic stability of small solitons to 1D NLS with potential. http://arxiv.org/abs/math.AP/0605031, 2006, to appear in J. Math. Kyoto Univ

  24. Mizumachi, T.: Asymptotic stability of small solitons for 2D Nonlinear Schrödinger equations with potential. http://arxiv.org/abs/math.AP/0609323, 2006

  25. Pillet C.A., Wayne C.E.: Invariant manifolds for a class of dispersive, Hamiltonian partial differential equations. J. Diff. Eq. 141, 310–326 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Perelman G.S.: Asymptotic stability of solitons for nonlinear Schrödinger equations. Comm. in PDE 29, 1051–1095 (2004)

    MATH  MathSciNet  Google Scholar 

  27. Rodnianski, I., Schlag, W., Soffer, A.: Asymptotic stability of N-soliton states of NLS. http://arxiv.org/abs/math.AP/0309114, 2003

  28. Shatah J., Strauss W.: Instability of nonlinear bound states. Commun. Math. Phys. 100, 173–190 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Sigal I.M.: Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasi- periodic solutions. Commun. Math. Phys. 153, 297–320 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Stuart D.M.A.: Modulation approach to stability for non topological solitons in semilinear wave equations. J. Math. Pures Appl. 80, 51–83 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Soffer A., Weinstein M.: Multichannel nonlinear scattering II. The case of anisotropic potentials and data. J. Diff. Eq. 98, 376–390 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. Soffer A., Weinstein M.: Selection of the ground state for nonlinear Schrödinger equations. Rev. Math. Phys. 16, 977–1071 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Soffer A., Weinstein M.: Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations. Invent. Math. 136, 9–74 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  34. Tsai T.P.: Asymptotic dynamics of nonlinear Schrödinger equations with many bound states. J. Diff. Eq. 192, 225–282 (2003)

    Article  MATH  Google Scholar 

  35. Tsai T.P., Yau H.T.: Asymptotic dynamics of nonlinear Schrödinger equations: resonance dominated and radiation dominated solutions. Comm. Pure Appl. Math. 55, 153–216 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tsai T.P., Yau H.T.: Relaxation of excited states in nonlinear Schrödinger equations. Int. Math. Res. Not. 31, 1629–1673 (2002)

    Article  MathSciNet  Google Scholar 

  37. Tsai T.P., Yau H.T.: Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data. Adv. Theor. Math. Phys. 6, 107–139 (2002)

    MATH  MathSciNet  Google Scholar 

  38. Weder R.: Center manifold for nonintegrable nonlinear Schrödinger equations on the line. Commun. Math. Phys. 170, 343–356 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  39. Weinstein M.: Lyapunov stability of ground states of nonlinear dispersive equations. Comm. Pure Appl. Math. 39, 51–68 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  40. Weinstein M.: Modulation stability of ground states of nonlinear Schrödinger equations. Siam J. Math. Anal. 16, 472–491 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  41. Wei J., Winter M.: On a cubic-quintic Ginzburg-Landau equation with global coupling. Proc. Amer. Math. Soc. 133, 1787–1796 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  42. Yajima K.: The W k,p-continuity of wave operators for Schrödinger operators. J. Math. Soc. Japan 47, 551–581 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  43. Yajima K.: The W k,p-continuity of wave operators for Schrödinger operators III. J. Math. Sci. Univ. Tokyo 2, 311–346 (1995)

    MATH  MathSciNet  Google Scholar 

  44. Zhou, G.: Perturbation Expansion and N th Order Fermi Golden Rule of the Nonlinear Schrödinger Equations. http://arxiv.org/abs/math.AP/0610381, 2006

  45. Zhou, G., Sigal, I.M.: Relaxation of Solitons in Nonlinear Schrödinger Equations with Potential. http://arxiv.org/abs/math-ph/0603060 , 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scipio Cuccagna.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuccagna, S., Mizumachi, T. On Asymptotic Stability in Energy Space of Ground States for Nonlinear Schrödinger Equations. Commun. Math. Phys. 284, 51–77 (2008). https://doi.org/10.1007/s00220-008-0605-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0605-3

Keywords

Navigation