Advertisement

Communications in Mathematical Physics

, Volume 283, Issue 3, pp 579–611 | Cite as

Equilibrium States for Interval Maps: Potentials with sup φ − inf φ < h top (f)

  • Henk BruinEmail author
  • Mike Todd
Article

Abstract

We study an inducing scheme approach for smooth interval maps to prove existence and uniqueness of equilibrium states for potentials φ with the ‘bounded range’ condition sup φ − inf φ < h top (f), first used by Hofbauer and Keller [HK]. We compare our results to Hofbauer and Keller’s use of Perron-Frobenius operators. We demonstrate that this ‘bounded range’ condition on the potential is important even if the potential is Hölder continuous. We also prove analyticity of the pressure in this context.

Keywords

Gibbs Measure Induce Scheme Exponential Growth Rate Summable Variation Markov Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ab.
    Abramov L.M.: The entropy of a derived automorphism. Dokl. Akad. Nauk SSSR 128, 647–650 (1959)zbMATHMathSciNetGoogle Scholar
  2. Ba.
    Baladi, V.: Positive transfer operators and decay of correlations. Advanced Series in Nonlinear Dynamics 16, River Edge, NJ: World Scientific Publishing Co., Inc., 2000Google Scholar
  3. BaK.
    Baladi V., Keller G.: Zeta functions and transfer operators for piecewise monotone transformations. Math. Phys. 127, 459–477 (1990)zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. BGMY.
    Block, L., Guckenheimer, J., Misiurewicz, M., Young, L.-S.: Periodic points and topological entropy of one-dimensional maps, Lecture Notes in Math. 819, Berlin: Springer Verlag, 1980, pp. 18–34Google Scholar
  5. Bl.
    Blokh, A.: Decomposition of dynamical systems on an interval. (Russian) Usp. Mat. Nauk 38, 179–180 (1983); English translation: Russ. Math. Surve. 38, 133–134 (1983)Google Scholar
  6. Bo.
    Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Math. 470, Berlin: Springer, 1975, pp. 51–58Google Scholar
  7. BBr.
    Brucks, K., Bruin, H.: Topics from one–dimensional dynamics. London Mathematical Society, Student Texts 62, Cambridge: Cambridge University Press, 2004Google Scholar
  8. Br1.
    Bruin H.: Induced maps, Markov extensions and invariant measures in one–dimensional dynamics. Commun. Math. Phys. 168, 571–580 (1995)zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. Br2.
    Bruin H.: Topological conditions for the existence of absorbing Cantor sets. Trans. Amer. Math. Soc. 350, 2229–2263 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  10. BrK.
    Bruin H., Keller G.: Equilibrium states for S-unimodal maps. Ergod. Theory Dyn. Sys. 18, 765–789 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  11. BRSS.
    Bruin H., Rivera-Letelier J., Shen W., van Strien S.: Large derivatives, backward contraction and invariant densities for interval maps. Invent. Math. 172(3), 509–533 (2008)zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. BrT.
    Bruin, H., Todd, M.: Equilibrium states for interval maps: the potential  − t log |Df|. http://arXiv.org/abs/0704.2199v.[math.DS], 2007
  13. dB.
    de Bruyn N.G.: Asymptotic methods in analysis. Dover Publ, New York (1981)Google Scholar
  14. Bu1.
    Buzzi J.: Specification on the interval. Trans. Amer. Math. Soc. 349, 2737–2754 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  15. Bu2.
    Buzzi J.: Markov extensions for multi-dimensional dynamical systems. Israel J. Math. 112, 357–380 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. BuSa.
    Buzzi J., Sarig O.: Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps. Ergod. Theory Dyn. Sys. 23, 1383–1400 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  17. DKU.
    Denker M., Keller G., Urbański M.: On the uniqueness of equilibrium states for piecewise monotone mappings. Studia Math. 97, 27–36 (1990)zbMATHMathSciNetGoogle Scholar
  18. DU.
    Denker M., Urbański M.: Ergodic theory of equilibrium states for rational maps. Nonlinearity 4, 103–134 (1991)zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. DoS.
    Downarowicz T., Serafin J.: Fiber entropy and conditional variational principles in compact non–metrizable spaces. Fund. Math. 172, 217–247 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  20. FFY.
    Fiebig D., Fiebig U.-R., Yuri M.: Pressure and equilibrium states for countable state Markov shifts. Israel J. Math. 131, 221–257 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  21. H1.
    Hofbauer F.: Examples for the nonuniqueness of the equilibrium state. Trans. Amer. Math. Soc. 228, 223–241 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  22. H2.
    Hofbauer F.: Piecewise invertible dynamical systems. Probab. Theory Relat. Fields 72(3), 359–386 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  23. HK.
    Hofbauer F., Keller G.: Equilibrium states for piecewise monotonic transformations. Ergod. Theory Dyn. Sys. 2, 23–43 (1982)zbMATHMathSciNetGoogle Scholar
  24. K1.
    Keller G.: Lifting measures to Markov extensions. Monatsh. Math. 108, 183–200 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  25. K2.
    Keller, G.: Equilibrium states in ergodic theory. London Mathematical Society Student Texts 42, Cambridge: Cambridge University Press, 1998Google Scholar
  26. MN1.
    Melbourne I., Nicol M.: Almost sure invariance principle for nonuniformly hyperbolic systems. Commun. Math. Phys. 260, 131–146 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  27. MN2.
    Melbourne, I., Nicol, M.: Large deviations in nonuniformly hyperbolic dynamical systems. to appear in Trans. Amer. Math. Soc., doi: S0002-9947(08)04520-0, June 4, 2008
  28. MSz.
    Misiurewicz M., Szlenk W.: Entropy of piecewise monotone mappings. Studia Math. 67, 45–63 (1980)zbMATHMathSciNetGoogle Scholar
  29. O.
    Oliveira K.: Equilibrium states for non-uniformly expanding maps. Ergod. Theory Dyn. Sys. 23, 1891–1905 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  30. P.
    Paccaut F.: Statistics of return times for weighted maps of the interval. Ann. Inst. H. Poincaré Probab. Statist. 36, 339–366 (2000)zbMATHCrossRefMathSciNetADSGoogle Scholar
  31. PeSe.
    Pesin, Y., Senti, S.: Thermodynamical formalism associated with inducing schemes for one–dimensional maps. Moscow J. Math. 5, 3 669–678, 743–744 (2005)Google Scholar
  32. PeZ.
    Pesin Y., Zhang K.: Phase transitions for uniformly expanding maps. J. Stat. Phys. 122, 1095–1110 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  33. Pr.
    Przytycki F.: Lyapunov characteristic exponents are nonnegative. Proc. Amer. Math. Soc. 119, 309–317 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  34. Ru1.
    Ruelle D.: An inequality for the entropy of differentiable maps. Bol. Soc. Brasil. Mat. 9, 83–87 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  35. R.
    Ruelle D.: Thermodynamic formalism. Reading MA, Addison Wesley (1978)zbMATHGoogle Scholar
  36. Sa1.
    Sarig, O.: Thermodynamic formalism for Markov shifts. PhD. thesis, Tel–Aviv, 2000Google Scholar
  37. Sa2.
    Sarig O.: Phase transitions for countable Markov shifts. Commun. Math. Phys. 217, 555–577 (2001)zbMATHCrossRefADSMathSciNetGoogle Scholar
  38. Sa3.
    Sarig O.: Existence of Gibbs measures for countable Markov shifts. Proc. Amer. Math. Soc. 131, 1751–1758 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  39. Si.
    Sinai, Y.: Gibbs measures in ergodic theory, (Russian). Usp. Mat. Nauk 27, 21–64 (1972); English translation: Russ. Math. Surv. 27, 21–69 (1972)Google Scholar
  40. W.
    Walters, P.: Some results on the classification of non-invertible measure preserving transformations. Lecture Notes in Math. 318, Berlin: Springer, 1973, pp. 266–276Google Scholar
  41. Y.
    Young L.-S.: Recurrence times and rates of mixing. Israel J. Math. 110, 153–188 (1999)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of SurreySurreyUK
  2. 2.Departamento de Matemática PuraFaculdade de Ciências da Universidade do PortoPortoPortugal

Personalised recommendations