Skip to main content
Log in

Periodic Minimizers in 1D Local Mean Field Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

There are not many physical systems where it is possible to demonstate rigorously that energy minimizers are periodic. Using reflection positivity techniques we prove, for a class of mesoscopic free-energies representing 1D systems with competing interactions, that all minimizers are either periodic, with zero average, or of constant sign. Examples of both phenomena are given. This extends our previous work where such results were proved for the ground states of lattice systems with ferromagnetic nearest neighbor interactions and dipolar type antiferromagnetic long range interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arlett J., Whitehead J.P., MacIsaac A.B., De’Bell K.: Phase diagram for the striped phase in the two-dimensional dipolar Ising model. Phys. Rev. B 54, 3394 (1996)

    Article  ADS  Google Scholar 

  2. Alberti G., Müller S.: A new approach to variational problems with multiple scales. Comm. Pure Appl. Math. 54, 761–825 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benois O., Bodineau T., Buttà P., Presutti E.: On the validity of van der Waals theory of surface tension. Markov Process. Related Fields 3, 175–198 (1997)

    MATH  MathSciNet  Google Scholar 

  4. Benois O., Bodineau T., Presutti E.: Large deviations in the van der Waals limit. Stochastic Process. Appl. 75, 89–104 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Borue V.Y., Erukhimovich I.Y.: A Statistical Theory of Weakly Charged Polyelectrolytes: Fluctuations, Equation of State, and Microphase Separation. Macromolecules 21, 3240 (1988)

    Article  Google Scholar 

  6. Buttà P., Lebowitz J.L.: Local Mean Field Models of Uniform to Nonuniform Density (fluid-crystal) Transitions. J. Phys. Chem. B 109, 6849–6854 (2005)

    Article  Google Scholar 

  7. Brazovskii S.A.: Phase transition of an isotropic system to a non uniform state. Zh. Eksp. Teor. Fiz. 68, 175 (1975)

    Google Scholar 

  8. Carlen E., Carvalho M.C., Esposito R., Lebowitz J.L., Marra R.: Phase Transitions in Equilibrium Systems: Microscopic Models and Mesoscopic Free Energies. J. Mole. Phys. 103, 3141–3151 (2005)

    Article  ADS  Google Scholar 

  9. Chen X., Oshita Y.: Periodicity and Uniqueness of Global Minimizers of an Energy Functional Containing a Long-Range Interaction. SIAM J. Math. Anal. 37, 1299–1332 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. DeSimone, A., Kohn, R.V., Otto, F., Müller, S.: Recent analytical developments in micromagnetics. In: The Science of Hysteresis II: Physical Modeling, Micromagnetics, and Magnetization Dynamics, Bertotti G., Mayergoyz I. (eds) Amsterdam: Elsevier (2006), pp. 269–381

  11. Dupuis P., Ellis R.S.: A weak convergence approach to the theory of large deviations. John Wiley & Sons, Inc., Wiley Series in Probability and Statistics, New York (1997)

    MATH  Google Scholar 

  12. Emery V.J., Kivelson S.A.: Frustrated electronic phase separation and high-temperature superconductors. Physica C 209, 597 (1993)

    Article  ADS  Google Scholar 

  13. Frohlich J., Israel R., Lieb E.H., Simon B.: Phase Transitions and Reflection Positivity. I. General Theory and Long Range Lattice Models. Commun. Math. Phys. 62, 1 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  14. Garel T., Doniach S.: Phase transitions with spontaneous modulation-the dipolar Ising ferromagnet. Phys. Rev. B 26, 325 (1982)

    Article  ADS  Google Scholar 

  15. Gates D.J., Penrose O.: The van der Waals limit for classical systems. I. A variational principle. Commun. Math. Phys. 15, 255–276 (1969)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Gates D.J., Penrose O.: The van der Waals limit for classical systems. III. Deviation from the van der Waals-Maxwell theory. Commun. Math. Phys. 17, 194–209 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  17. Giuliani A., Lebowitz J.L., Lieb E.H.: Ising models with long-range dipolar and short range ferromagnetic interactions. Phys. Rev. B 74, 064420 (2006)

    Article  ADS  Google Scholar 

  18. Giuliani A., Lebowitz J.L., Lieb E.H.: Striped phases in two dimensional dipole systems. Phys. Rev. B 76, 184426 (2007)

    Article  ADS  Google Scholar 

  19. Grousson M., Tarjus G., Viot P.: Phase diagram of an Ising model with long-range frustrating interactions: A theoretical analysis. Phys. Rev. E 62, 7781 (2000)

    Article  ADS  Google Scholar 

  20. Hohenberg P.C., Swift J.B.: Metastability in fluctuation-driven first-order transitions: Nucleation of lamellar phases. Phys. Rev. E 52, 1828 (1995)

    Article  ADS  Google Scholar 

  21. Lieb E.H., Loss M.: Analysis.Second Edition. Amer. Math. Soc., providence RI (2001)

    MATH  Google Scholar 

  22. Lebowitz J.L., Penrose O.: Rigorous Treatment of the Van Der Waals-Maxwell Theory of the Liquid-Vapor Transition. J. Math. Phys. 7, 98–113 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  23. Leibler L.: Theory of Microphase Separation in Block Copolymers. Macromolecules 13, 1602 (1980)

    Article  Google Scholar 

  24. MacIsaac A.B., Whitehead J.P., Robinson M.C., De’Bell K.: Striped phases in two-dimensional dipolar ferromagnets. Phys. Rev. B 51, 16033 (1995)

    Article  ADS  Google Scholar 

  25. McMillian W.L.: Landau theory of charge-density waves in transition-metal dichalcogenides. Phys. Rev. B 12, 1187 (1975)

    Article  ADS  Google Scholar 

  26. Muratov C.B.: Theory of domain patterns in systems with long-range interactions of Coulomb type. Phys. Rev. E 66, 066108 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  27. Müller S.: Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. Partial Differ. Eq. 1, 169–204 (1993)

    Article  MATH  Google Scholar 

  28. Nussinov, Z.: Commensurate and Incommensurate O(n) Spin Systems: Novel Even-Odd Effects, A Generalized Mermin-Wagner-Coleman Theorem, and Ground States. http://arxiv.org/list/cond-mat/0105253

  29. Ohta T., Kawasaki K.: Equilibrium morphology of block polymer melts. Macromolecules 19, 2621–2632 (1986)

    Article  Google Scholar 

  30. Seul M., Andelman D.: Domain Shapes and Patterns: The Phenomenology of Modulated Phases. Science 267, 476 (1995)

    Article  ADS  Google Scholar 

  31. Spivak B., Kivelson S.A.: Phases intermediate between a two-dimensional electron liquid and Wigner crystal. Phys. Rev. B 70, 155114 (2004)

    Article  ADS  Google Scholar 

  32. Spivak B., Kivelson S.A.: Transport in two dimensional electronic micro-emulsions. Ann. Phys. (N.Y.) 321, 2071 (2006)

    Article  MATH  ADS  Google Scholar 

  33. Stoycheva A.D., Singer S.J.: Phys. Rev. Lett. 84, 4657 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Giuliani.

Additional information

Communicated by H. Spohn

© 2008 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giuliani, A., Lebowitz, J.L. & Lieb, E.H. Periodic Minimizers in 1D Local Mean Field Theory. Commun. Math. Phys. 286, 163–177 (2009). https://doi.org/10.1007/s00220-008-0589-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0589-z

Keywords

Navigation