Skip to main content
Log in

Random Repeated Interaction Quantum Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a quantum system \({\mathcal{S}}\) interacting sequentially with independent systems \({\mathcal{E}_m}\) , m = 1,2,... Before interacting, each \({\mathcal{E}_m}\) is in a possibly random state, and each interaction is characterized by an interaction time and an interaction operator, both possibly random. We prove that any initial state converges to an asymptotic state almost surely in the ergodic mean, provided the couplings satisfy a mild effectiveness condition. We analyze the macroscopic properties of the asymptotic state and show that it satisfies a second law of thermodynamics.

We solve exactly a model in which \({\mathcal{S}}\) and all the \({\mathcal{E}_m}\) are spins: we find the exact asymptotic state, in case the interaction time, the temperature, and the excitation energies of the \({\mathcal{E}_m}\) vary randomly. We analyze a model in which \({\mathcal{S}}\) is a spin and the \({\mathcal{E}_m}\) are thermal fermion baths and obtain the asymptotic state by rigorous perturbation theory, for random interaction times varying slightly around a fixed mean, and for small values of a coupling constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Araki H., Wyss W.: Representations of canonical anticommutation relations. Helv. Phys. Acta 37, 136–159 (1964)

    MATH  MathSciNet  Google Scholar 

  2. Attal S., Joye A.: The Langevin Equation for a Quantum Heat Bath. J. Funct. Anal. 247, 253–288 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Attal, S., Joye, A., Pillet, C.-A. (eds): Open Quantum Systems I-III, Lecture Notes in Mathematics, Volumes 1880–1882. Springer Verlag, Berlin-Heidelberg-New York (2006)

    Google Scholar 

  4. Azoff E.A.: Borel Measurability in Linear Algebra. Proc. Am. Math. Soc. 42(2), 346–350 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics, Volumes 1 and 2, Texts and Monographs in Physics. Springer Verlag, Berlin-Heidelberg-New York (1996)

    Google Scholar 

  6. Bruneau, L.: Repeated interaction quantum systems. In: Proceedings of the IRS Conference, to appear in Markov Process. Related Fields (Paris, January 2007)

  7. Bruneau L., Joye A., Merkli M.: Asymptotics of repeated interaction quantum systems. J. Func. Anal. 239, 310–344 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bruneau, L., Joye, A., Merkli, M.: Infinite products of random matrices and repeated interactions dynamics. http://arXiv.org/list/math.PR/0703675, 2007

  9. Jakšic V., Pillet C.-A.: Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs. Commun. Math. Phys. 226, 131–162 (2002)

    Article  MATH  ADS  Google Scholar 

  10. Jakšić, V., Pillet, C.-A.: A note on the entropy production formula. In: Advances in differential equations and mathematical physics (Birmingham, AL, 2002), Contemp. Math. 327, Providence, RI: Amer. Math. Soc. 2003, pp. 175–180

  11. Kato K.: Perturbation Theory for Linear Operators. 2nd edition. Springer, Berlin (1976)

    MATH  Google Scholar 

  12. Merkli M., Mück M., Sigal I.M.: Instability of Equilibrium States for Coupled Heat Reservoirs at Different Temperatures. J. Funct. Anal. 243, 87–120 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Merkli M., Mück M., Sigal I.M.: Theory of Non-Equilibrium Stationary Sates as a Theory of Resonances. Ann. H. Poincaré 8(8), 1539–1593 (2007)

    Article  MATH  Google Scholar 

  14. Merkli, M., Sigal, I.M., Berman, G.P.: Resonance Theory of Decoherence and Thermalization. Ann. Phys., 323(2), 373–412 (2008) Decoherence and thermalization, Phys. Rev. Lett. 98(13), 130401 (2007)

    Google Scholar 

  15. Meschede D., Walther H., Müller G.: One-atom maser. Phys. Rev. Lett. 54, 551–554 (1993)

    Article  ADS  Google Scholar 

  16. Weidinger M., Varcoe B.T.H., Heerlein R., Walther H.: Trapping states in micromaser. Phys. Rev. Lett. 82, 3795–3798 (1999)

    Article  ADS  Google Scholar 

  17. Wellens T., Buchleitner A., Kümmerer B., Maassen H.: Quantum state preparation via asymptotic completeness. Phys. Rev. Lett. 85, 3391–3364 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Merkli.

Additional information

Communicated by I.M. Sigal

Partly supported by the Ministère français des affaires étrangères through a séjour scientifique haut niveau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruneau, L., Joye, A. & Merkli, M. Random Repeated Interaction Quantum Systems. Commun. Math. Phys. 284, 553–581 (2008). https://doi.org/10.1007/s00220-008-0580-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0580-8

Keywords

Navigation