Advertisement

Communications in Mathematical Physics

, Volume 283, Issue 3, pp 701–727 | Cite as

Finsler Spinoptics

  • C. DuvalEmail author
Article

Abstract

The objective of this article is to build up a general theory of geometrical optics for spinning light rays in an inhomogeneous and anisotropic medium modeled on a Finsler manifold. The prerequisites of local Finsler geometry are reviewed together with the main properties of the Cartan connection used in this work. Then, the principles of Finslerian spinoptics are formulated on the grounds of previous work on Riemannian spinoptics, and relying on the generic coadjoint orbits of the Euclidean group. A new presymplectic structure on the indicatrix-bundle is introduced, which gives rise to a foliation that significantly departs from that generated by the geodesic spray, and leads to a specific anomalous velocity, due to the coupling of spin and the Cartan curvature, and related to the optical Hall effect.

Keywords

Coadjoint Orbit Finsler Manifold Finsler Geometry Finsler Metrics Cartan Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abate, M., Patrizio, G.: Finsler Metrics –A Global Approach, LNM 1591, Berlin-Heidelberg-New York: Springer-Verlag, 1994Google Scholar
  2. 2.
    Alvarez Paiva, J.C.: Some problems on Finsler geometry. In: Handbook of differential geometry. Vol. II, Dillen, F., Verstraelen, L. (eds.), Amsterdam: Elsevier, 2005Google Scholar
  3. 3.
    Antonelli P.L., Ingarden R.S., Matsumoto M.: The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology. Kluwer Academic Press, Boston (1993)zbMATHGoogle Scholar
  4. 4.
    Bejancu A., Farran H.R.: A Geometric Characterization of Finsler Manifolds of Constant Curvature K = 1. Internat. J. Math. & Math. Sci. 23(6), 399–407 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bao, D., Chern, S.-S., Shen, Z.: On the Gauss-Bonnet integrand for 4-dimensional Landsberg spaces. In: Finsler Geometry, Bao, D., Chern, S.-S., Shen, Z. (eds.), Contemporary Mathematics 196, Providence, RI: Amer. Math. Soc., 1996Google Scholar
  6. 6.
    Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. GTM 200, New York: Springer 2000Google Scholar
  7. 7.
    Bao, D., Robles, C. Ricci and Flag Curvatures in Finsler Geometry. In: A Sampler of Riemann-Finsler Geometry, Bao, D., Bryant, R.L., Chern, S.-S., Shen, Z. (eds.), MSRI Publications 50, Cambridge: Cambridge University Press, 2004Google Scholar
  8. 8.
    Berry M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392, 45–57 (1984)zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Bliokh K.Yu.: Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect. Phys. Rev. Lett. 97, 043901 (2006)CrossRefADSGoogle Scholar
  10. 10.
    Bliokh K.Yu., Bliokh Yu.P.: Topological spin transport of photons: the optical Magnus Effect and Berry Phase. Phys. Lett. A 333, 181–186 (2004)zbMATHCrossRefADSGoogle Scholar
  11. 11.
    Bliokh K.Yu., Bliokh Yu.P.: Modified geometrical optics of a smoothly inhomogeneous isotropic medium: the anisotropy, Berry phase, and the optical Magnus effect. Phys. Rev. E 70, 026605 (2004)CrossRefADSGoogle Scholar
  12. 12.
    Bliokh K.Yu., Bliokh Yu.P.: Conservation of Angular Momentum, Transverse Shift, and Spin Hall Effect in Reflection and Refraction of Electromagnetic Wave Packet. Phys. Rev. Lett. 96, 073903 (2006)CrossRefADSGoogle Scholar
  13. 13.
    Bliokh K.Yu., Frolov D.Yu., Kravtsov Yu.A.: Non-Abelian evolution of electromagnetic waves in a weakly anisotropic inhomogeneous medium. Phys. Rev. A 75, 053821 (2007)CrossRefADSGoogle Scholar
  14. 14.
    Born M., Wolf E.: Principles of optics. Cambridge University Press, Cambridge (1999)Google Scholar
  15. 15.
    Caponio, E., Javaloyes, M.A., Masiello, A.: Variational properties of geodesics in non-reversible Finsler manifolds and applications.http://arxiv.org/abs/math/0702323, 2007
  16. 16.
    Cariñena J.F., Nasarre N.: On the symplectic structure arising in geometric optics. Fortschr. Phys. 44, 181–198 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Cariñena J.F., Nasarre N.: Presymplectic geometry and Fermat’s principle for anisotropic media. J. Phys. A 29, 1695–1702 (1996)zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Cartan E.: Les espaces de Finsler. Hermann, Paris (1934)zbMATHGoogle Scholar
  19. 19.
    Chern, S.-S.: Riemannian geometry as a special case of Finsler geometry. In: Finsler Geometry, Bao, D., Chern, S.-S., Shen, Z. (eds.), Contemporary Mathematics 196, Providence, RI: Amer. Math. Soc., 1996Google Scholar
  20. 20.
    Chern S.-S.: Finsler Geometry Is Just Riemannian Geometry without the Quadratic Restriction. Not. Amer. Math. Soc. 43(9), 959–963 (1996)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Duval C., Horváth Z., Horváthy P.: Geometrical Spinoptics and the Optical Hall Effect. J. Geom. Phys. 57, 925–941 (2007)zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Duval C., Horváth Z., Horváthy P.: Fermat Principle for spinning light and the Optical Hall effect. Phys. Rev. D 74, 021701 (R) (2006)CrossRefADSGoogle Scholar
  23. 23.
    Foulon P.: Géométrie des équations différentielles du second ordre. Ann. Inst. Henri Poincaré 45(1), 1–28 (1986)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Gosselin P., Bérard A., Mohrbach H.: Spin Hall effect of Photons in a Static Gravitational Field. Phys. Rev. D 75, 084035 (2007)CrossRefADSGoogle Scholar
  25. 25.
    Guillemin V., Sternberg S.: Symplectic techniques in physics. Cambridge University Press, Cambridge (1984)zbMATHGoogle Scholar
  26. 26.
    Gutkin E., Tabachnikov S.: Billiards in Finsler and Minkowski geometries. J. Geom. Phys. 40, 277–301 (2002)zbMATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Iglesias P.: Symétries et moment. Hermann, Paris (2000)Google Scholar
  28. 28.
    Ingarden, R.: On physical applications of Finsler geometry. In: Finsler Geometry, Bao, D., Chern, S.-S., Shen, Z. (eds.), Contemporary Mathematics 196, Providence, RI: Amer. Math. Soc., 1996Google Scholar
  29. 29.
    Kravtsov Yu.A., Bieg B., Bliokh K.Yu.: Stokes-vector evolution in a weakly anisotropic inhomogeneous medium. J. Opt. Soc. Am. A 24, 3388–3403 (2007)CrossRefADSGoogle Scholar
  30. 30.
    Knebelman M.S.: Conformal geometry of generalized metric spaces. Proc. Nat. Acad. Sci. USA 15, 376–379 (1929)zbMATHCrossRefADSGoogle Scholar
  31. 31.
    Künzle H.P.: Canonical dynamics of spinning particles in gravitational and electromagnetic fields. J. Math. Phys. 13, 739–744 (1972)zbMATHCrossRefADSGoogle Scholar
  32. 32.
    Marsden J.-E., Ratiu T.: Introduction to Mechanics and Symmetry. Springer, Berlin-Heidelberg-New York (1999)zbMATHGoogle Scholar
  33. 33.
    Onoda M., Murakami S., Nagaosa N.: Hall Effect of Light. Phys. Rev. Lett. 93, 083901 (2004)CrossRefADSGoogle Scholar
  34. 34.
    Onoda M., Murakami S., Nagaosa N.: Geometrical Aspects in Optical Wavepackets Dynamics. Phys. Rev. E 74, 066610 (2006)CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Perlick V.: Fermat principle in Finsler spacetimes. Gen. Relativ. Gravit. 38(2), 365–380 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Rund H.: The differential geometry of Finsler spaces. Springer Verlag, Berlin-Heidelberg-New York (1959)zbMATHGoogle Scholar
  37. 37.
    Segre S.E., Zanza V.: Derivation of the pure Faraday and Cotton-Mouton effects when polarimetric effects in a tokamak are large. Plasma Phys. Control. Fusion 48, 1–13 (2006)CrossRefGoogle Scholar
  38. 38.
    Shen, Z.: Landsberg Curvature, S-Curvature and Riemann Curvature. In: A Sampler of Riemann-Finsler Geometry, Bao, D., Bryant, R.L., Chern, S.-S., Shen, Z. (eds.), MSRI Publications 50, Cambridge: Cambridge University Press, 2004Google Scholar
  39. 39.
    Souriau, J.-M.: Structure des systèmes dynamiques, Paris: Dunod, 1970, ©1969; Structure of Dynamical Systems. A Symplectic View of Physics, translated by C.H. Cushman-de Vries, (R.H. Cushman, G.M. Tuynman, Translation eds.), Basel-Boston: Birkhäuser, 1997Google Scholar
  40. 40.
    Souriau J.-M.: Modèle de particule à spin dans le champ électromagnétique et gravitationnel. Ann. Inst. Henri Poincaré 20A, 315–364 (1974)MathSciNetGoogle Scholar
  41. 41.
    Sternberg, S.: On the Role of Field Theories in our Physical Conception of Geometry. In: Proc. 2nd Bonn Conf. Diff. Geom. Meths. in Math. Phys, Lecture Notes in Mathematics, 676, Berlin-Heidelberg- New York: Springer-Verlag, 1978, pp. 1–80Google Scholar
  42. 42.
    van Tiggelen B.A.: Transverse diffusion of light in Faraday-Active Media. Phys. Rev. Lett. 75, 422–424 (1995)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Centre de Physique Théorique, CNRSMarseille Cedex 9France

Personalised recommendations