Skip to main content
Log in

A Spinor Approach to Walker Geometry

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A four-dimensional Walker geometry is a four-dimensional manifold M with a neutral metric g and a parallel distribution of totally null two-planes. This distribution has a natural characterization as a projective spinor field subject to a certain constraint. Spinors therefore provide a natural tool for studying Walker geometry, which we exploit to draw together several themes in recent explicit studies of Walker geometry and in other work of Dunajski [11] and Plebañski [30] in which Walker geometry is implicit. In addition to studying local Walker geometry, we address a global question raised by the use of spinors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bérard Bergery L., Ikemakhen A.: Sur l’holonomie des variétés pseudo-riemanniennes de signature (n,n). Bull. Soc. Math. France 125, 93–114 (1997)

    MATH  MathSciNet  Google Scholar 

  2. Blažić N., Bokan N., Rakić Z.: Osserman Pseudo-Riemannian Manifolds of Signature (2,2). J. Austral. Math. Soc. 71, 367–395 (2001)

    MATH  Google Scholar 

  3. Boyer, C.P., Finley III, J.D., Plebañski, J.F.: Complex General Relativity, \({\mathcal H}\) and \({{\mathcal {HH}}}\) Spaces-A Survey of One Approach. In: Held, A. (ed.) General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, Vol. 2. New York: Plenum Press, 1980, pp. 241–281

  4. Brozos-Vázquez M., García-Río E., Vázquez-Lorenzo R.: Conformally Osserman four-dimensional manifolds whose conformal Jacobi operators have complex eigenvalues. Proc. R. Soc. London A 462, 1425–1441 (2006)

    Article  MATH  ADS  Google Scholar 

  5. Chaichi M., Garcí a-Rí o E., Matsushita Y.: Curvature properties of four-dimensional Walker metrics. Class. Quantum Grav. 22, 559–577 (2005)

    Article  MATH  ADS  Google Scholar 

  6. Cruceanu V., Gadea P.M., Muñoz Masqué J.: Para-Hermitian and Para-Kähler Manifolds. Quad. Inst. Mat. Univ. Messina 1, 1–72 (1995)

    Google Scholar 

  7. Cruceanu V., Fortuny P., Gadea P.M.: A survey on paracomplex geometry. Rocky Mountain J. Math. 26, 83–115 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Díaz-Ramos J.C., Garcí a-Rí o E., Vázquez-Lorenzo R.: Four-dimensional Osserman metrics with nondiagonalizable Jacobi operators. J. Geom. Anal. 16, 39–52 (2006)

    MATH  MathSciNet  Google Scholar 

  9. Davidov J., Díaz-Ramos J.C., García-Río E., Matsushita Y., Muškarov O., Vázquez-Lorenzo R.: Almost Kähler Walker four-manifolds. J. Geom. Phys. 57, 1075–1088 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Davidov J., Muškarov O.: Self-dual Walker metrics with two-step nilpotent Ricci operator. J. Geom. Phys. 57, 157–165 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Dunajski M.: Anti-self-dual four-manifolds with a parallel spinor. Proc. R. Soc. London A 458, 1205–1222 (2002)

    MATH  ADS  MathSciNet  Google Scholar 

  12. Dunajski, M., West, S.: Anti-self-dual conformal structures in neutral signature. http://arxiv.org.math.DG/0610280 2006

  13. Ghanam R., Thompson G.: The holonomy Lie algebras of neutral metrics in dimension four. J. Math. Phys. 42, 2266–2284 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Jensen G.R., Rigoli M.: Neutral Surfaces in Neutral Four-Spaces. Le Matematiche XLV, 407–443 (1990)

    MathSciNet  Google Scholar 

  15. Kamada, H.: Self-duality of neutral metrics on four-dimensional manifolds. In: The Third Pacific Rim Geometry Conference (Seoul, 1996), Monographs Geom. Topology 25. Cambridge, MA: International Press, 1998, pp. 79–98

  16. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Volume I. New York: Wiley-Interscience, 1963

  17. Law P.R.: Neutral Einstein metrics in four dimensions. J. Math. Phys. 32, 3039–3042 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Law P.R.: Neutral Geometry and the Gauss-Bonnet Theorem for Two-Dimensional Pseudo-Riemannian Manifolds. Rocky Mountain J. Math. 22, 1365–1383 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Law P.R.: Classification of the Weyl curvature spinors of neutral metrics in four dimensions. J. Geom. Phys. 56, 2093–2108 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Libermann P.: Sur les structures presque paracomplexes. C. R. Acad. Sci. Paris Sér. I Math. 234, 2517–2519 (1952)

    MATH  MathSciNet  Google Scholar 

  21. Libermann P.: Sur le problème d’équivalence de certaines structures infinitésimales. Ann. Mat. Pura Appl. (4) 36, 27–120 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  22. Matsushita Y.: Four-Dimensional Walker metrics and symplectic structures. J. Geom. Phys. 52, 89–99 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Matsushita Y.: Walker 4-manifolds with proper almost complex structures. J. Geom. Phys. 55, 385–398 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Matsushita, Y.: The existence of indefinite metrics of signature ( +  + –) and two kinds of almost complex structures in dimension four. In: Contemporary Aspects of Complex Analysis, Differential Geometry and Mathematical Physics (Proceedings of the 7th International Workshop on Complex Structures and Vector Fields, 2004, Plovdiv, Bulgaria), Hackensack, NJ: World Scientific Publishing Co., 2005, pp. 210–226

  25. Matsushita Y., Haze S., Law P.R.: Almost Kähler-Einstein Structures on 8-Dimensional Walker Manifolds. Monatsh. Math. 150, 41–48 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Matsushita Y., Law P.R.: Hitchin-Thorpe-Type Inequalities for Pseudo-Riemannian 4-Manifolds of Metric Signature ( +  + –). Geo. Ded. 87, 65–89 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. O’Neill B.: Semi-Riemannian Geometry: With Applications to Relativity. Academic Press, Orlando (1983)

    MATH  Google Scholar 

  28. Penrose R., Rindler W.: Spinors and Space-time, Volume 1: Two-Spinor Calculus and Relativistic Fields. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  29. Penrose R., Rindler W.: Spinors and Space-time, Volume 2: Spinor and Twistor Methods in Space-Time Geometry. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  30. Plebañski J.F.: Some Solutions of Complex Einstein Equations. J. Math. Phys. 16, 2395–2402 (1975)

    Article  ADS  Google Scholar 

  31. Plebañski J.F., Hacyan S.: Null geodesic surfaces and Goldberg-Sachs theorem in complex Riemannian spaces. J. Math. Phys. 16, 2403–2407 (1975)

    Article  MATH  ADS  Google Scholar 

  32. Porteous I.R.: Topological Geometry, Second Edition. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  33. Rashevskij P.K.: The scalar field in a stratified space. Trudy Sem. Vektor. Tenzor. Anal. 6, 225–248 (1948)

    Google Scholar 

  34. Rozenfeld B.A.: On unitary and stratified spaces. Trudy Sem. Vektor. Tenzor. Anal. 7, 260–275 (1949)

    MathSciNet  Google Scholar 

  35. Sibata T., Morinaga K.: Complete and Simpler Treatment of Wave Geometry. J. Sci. Hiroshima University, Series A. 6, 173–189 (1936)

    MATH  Google Scholar 

  36. Spivak, M.: A Comprehensive Introduction to Differential Geometry, Volume One. Second Edition. Berkeley: Publish or Perish Inc., 1979

  37. Spivak, M.: A Comprehensive Introduction to Differential Geometry, Volume Two. Second Edition. Berkeley: Publish or Perish Inc., 1979

  38. Sternberg S.: Lectures on Differential Geometry. Chelsea Publishing Company, New York (1983)

    MATH  Google Scholar 

  39. Thompson G.: Normal form of a metric admitting a parallel field of planes. J. Math. Phys. 33, 4008–4010 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Graduate Texts in Mathematics 94. New York: Springer-Verlag, 1983

  41. Walker A.G.: On parallel fields of partially null vector spaces. Quart. J. Math. (Oxford) 20, 135–145 (1949)

    Article  Google Scholar 

  42. Walker A.G.: Canonical form for a Riemannian space with a parallel field of null planes. Quart. J. Math. Oxford (2) 1, 69–79 (1950)

    Article  MATH  Google Scholar 

  43. Walker A.G.: Canonical forms (II): Parallel partially null planes. Quart. J. Math. Oxford (2) 1, 147–152 (1950)

    Article  MATH  Google Scholar 

  44. Walker A.G.: On Ruse’s spaces of recurrent curvature. Proc. London Math. Soc. (2) 52, 36–64 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  45. Walker A.G.: Connexions for parallel distributions in the large. Quart. J. Math. Oxford (2) 6, 301–308 (1955)

    Article  MATH  Google Scholar 

  46. Walker A.G.: Connexions for parallel distributions in the large II. Quart. J. Math. Oxford (2) 9, 221–231 (1958)

    Article  MATH  Google Scholar 

  47. Yano K.: Differential Geometry on Complex and Almost Complex Spaces. MacMillan, New York (1965)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Law.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Law, P.R., Matsushita, Y. A Spinor Approach to Walker Geometry. Commun. Math. Phys. 282, 577–623 (2008). https://doi.org/10.1007/s00220-008-0561-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0561-y

Keywords

Navigation