Skip to main content
Log in

Quantisations of Piecewise Parabolic Maps on the Torus and their Quantum Limits

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For general quantum systems the semiclassical behaviour of eigenfunctions in relation to the ergodic properties of the underlying classical system is quite difficult to understand. The Wignerfunctions of eigenstates converge weakly to invariant measures of the classical system, the so-called quantum limits, and one would like to understand which invariant measures can occur that way, thereby classifying the semiclassical behaviour of eigenfunctions.

We introduce a class of maps on the torus for whose quantisations we can understand the set of quantum limits in great detail. In particular we can construct examples of ergodic maps which have singular ergodic measures as quantum limits, and examples of non-ergodic maps where arbitrary convex combinations of absolutely continuous ergodic measures can occur as quantum limits.

The maps we quantise are obtained by cutting and stacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anantharaman N., Nonnenmacher S.: Half–delocalization of eigenfunctions for the laplacian on an Anosov manifold. Ann. Inst. Fourier 57(7), 2465–2523 (2007)

    MATH  MathSciNet  Google Scholar 

  2. Anantharaman, N.: Entropy and the localization of eigenfunctions. To appear in Ann. Math, accepted in 2006

  3. Bogomolny E., Schmit C.: Structure of wave functions of pseudointegrable billiards. Phys. Rev. Let. 92(24), 244102 (2004)

    Article  ADS  Google Scholar 

  4. Bonechi F., De Bièvre S.: Controlling strong scarring for quantized ergodic toral automorphisms. Duke Math. J. 117(3), 571–587 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colin de Verdière Y.: Ergodicité et fonctions propres du laplacien. Commun. Math. Phys. 102(3), 497–502 (1985)

    Article  ADS  MATH  Google Scholar 

  6. De Bièvre, S.: Quantum chaos: a brief first visit, Second Summer School in Analysis and Mathematical Physics (Cuernavaca, 2000), Contemp. Math., Vol. 289, Providence, RI: Amer. Math. Soc., 2001, pp. 161–218

  7. Degli Esposti, M., Graffi, S. (eds.): The mathematical aspects of quantum maps. Lecture Notes in Physics, Vol. 618, Berlin-Heidelberg-New York: Springer, 2003

  8. Ferenczi S.: Systems of finite rank. Colloq. Math. 73(1), 35–65 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Faure F., Nonnenmacher S.: On the maximal scarring for quantum cat map eigenstates. Commun. Math. Phys. 245(1), 201–214 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Faure F., Nonnenmacher S., De Bièvre S.: Scarred eigenstates for quantum cat maps of minimal periods. Commun. Math. Phys. 239(3), 449–492 (2003)

    Article  ADS  MATH  Google Scholar 

  11. Friedman N.A.: Replication and stacking in ergodic theory. Amer. Math. Monthly 99, 31–41 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gérard P., Leichtnam é.: Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J. 71(2), 559–607 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giraud O., Marklof J., O’Keefe S.: Intermediate statistics in quantum maps. J. Phys. A 37(28), L303–L311 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Katok A.B.: Invariant measures of flows on orientable surfaces. Dokl. Akad. Nauk SSSR 211, 775–778 (1973)

    MathSciNet  Google Scholar 

  15. Keane M.: Non-ergodic interval exchange transformations. Israel J. Math. 26(2), 188–196 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kelmer D.: Scarring on invariant manifolds for perturbed quantized hyperbolic toral automorphisms. Commun. Math. Phys. 276(2), 381–395 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kelmer, D.: Arithmetic Quantum Unique Ergodicity for Symplectic Linear Maps of the Multidimensional Torus. To appear in Ann. of Math, 2008

  18. Kelmer D.: Quantum Ergodicity for products of hyperbolic planes. J. Mod. Dyn. 2(2), 287–313 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Keynes H.B., Newton D.: A “minimal”, non-uniquely ergodic interval exchange transformation. Math. Z. 148(2), 101–105 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kurlberg P., Rudnick Z.: Hecke theory and equidistribution for the quantization of linear maps of the torus. Duke Math. J. 103(1), 47–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lindenstrauss E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. of Math. (2) 163(1), 165–219 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Marklof J., O’Keefe S.: Weyl’s law and quantum ergodicity for maps with divided phase space, with an appendix “Converse quantum ergodicity” by Steve Zelditch. Nonlinearity 18(1), 277–304 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Marklof J., Rudnick Z.: Quantum unique ergodicity for parabolic maps. Geom. Funct. Anal. 10(6), 1554–1578 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rosenzweig L.: Quantum unique ergodicity for maps on the torus. Ann. Henri Poincaré 7, 447–469 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rudnick Z., Sarnak P.: The behaviour of eigenstates of arithmetic hyperbolic manifolds. Commun. Math. Phys. 161(1), 195–213 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Schubert, R.: Semiclassical localization in phase space. PhD thesis, Ulm, 2001

  27. Shields, P.C.: The ergodic theory of discrete sample paths, Graduate Studies in Mathematics, Vol. 13, Providence, RI: Amer. Math. Soc., 1996

  28. Šnirel’man, A.I.: Ergodic properties of eigenfunctions. Uspehi Mat. Nauk 29, no. 6(180), 181–182 (1974)

    Google Scholar 

  29. Veech W.A.: Interval exchange transformations. J. Analyse Math. 33, 222–272 (1978)

    MathSciNet  MATH  Google Scholar 

  30. Veech W.A.: The metric theory of interval exchange transformations. I. Generic spectral properties. Amer. J. Math. 106(6), 1331–1359 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zelditch S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55(4), 919–941 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zelditch, S.: Quantum maps and automorphisms, The breadth of symplectic and Poisson geometry, Progr. Math., Vol. 232, Boston, MA: Birkhäuser Boston, 2005, pp. 623–654

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. Sarnak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CH., Krüger, T., Schubert, R. et al. Quantisations of Piecewise Parabolic Maps on the Torus and their Quantum Limits. Commun. Math. Phys. 282, 395–418 (2008). https://doi.org/10.1007/s00220-008-0557-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0557-7

Keywords

Navigation