Skip to main content
Log in

Root Asymptotics of Spectral Polynomials for the Lamé Operator

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The study of polynomial solutions to the classical Lamé equation in its algebraic form, or equivalently, of double-periodic solutions of its Weierstrass form has a long history. Such solutions appear at integer values of the spectral parameter and their respective eigenvalues serve as the ends of bands in the boundary value problem for the corresponding Schrödinger equation with finite gap potential given by the Weierstrass \(\wp\)-function on the real line. In this paper we establish several natural (and equivalent) formulas in terms of hypergeometric and elliptic type integrals for the density of the appropriately scaled asymptotic distribution of these eigenvalues when the integer-valued spectral parameter tends to infinity. We also show that this density satisfies a Heun differential equation with four singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Appl. Math. Ser. 55. Dover Publications, New York (1964)

    Google Scholar 

  2. Arscott F.M.: Periodic differential equations. Pergamon Press, New York (1964)

    MATH  Google Scholar 

  3. Belokolos D., Enolskii V. Z.: Reduction of Abelian functions and algebraically integrable systems. II. Complex analysis and representation theory. J. Math. Sci. (New York) 108, 295–374 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borcea J.: Choquet order for spectra of higher Lamé operators and orthogonal polynomials. J. Approx. Theory 151, 164–180 (2008)

    Article  MATH  Google Scholar 

  5. Borcea, J., Brändén, P., Shapiro B.: Higher Lamé equations, Heine-Stieltjes and Van Vleck polynomials. In preparation

  6. Bourget A.: Nodal statistics for the Van Vleck polynomials. Commun. Math. Phys. 230, 503–516 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Kuijlaars A.B.J., Van Assche W: The asymptotic zero distribution of orthogonal polynomials with varying recurrence coefficients. J. Approx. Theory 99, 167–197 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Grosset, M.P., Veselov, A.P.: Elliptic Faulhaber polynomials and Lamé densities of states. Int. Math. Res. Not. 2006, Art. ID 62120, 31 pp

  9. Grosset, M.P., Veselov, A.P.: Lamé’s equation, quantum top and elliptic Bernoulli polynomials. http://arXiv.org/list/math-ph/0508068, 2005

  10. Heine, E.: Handbuch der Kugelfunctionen, Vol. 1, Berlin: G. Reimer Verlag, 1878, pp. 472–479

  11. Ince E.L.: Further investigations into periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, 83–99 (1940)

    MathSciNet  Google Scholar 

  12. Ince E.L.: Ordinary differential equations. Dover Publications, New York (1944)

    MATH  Google Scholar 

  13. Maier R.S.: Lamé polynomials, hyperelliptic reductions and Lamé band structure. Philos. Trans. Roy. Soc. London Ser. A 366, 1115–1153 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. Poole, E.G.C.: Introduction to the theory of linear differential equations. New York: Dover Publications, New York, 1960

  15. Stieltjes T.: Sur certains polynômes qui vérifient une équation différentielle linéaire du second ordre et sur la théorie des fonctions de Lamé. Acta Math. 8, 321–326 (1885)

    Article  MathSciNet  Google Scholar 

  16. Takemura K: Analytic continuation of eigenvalues of the Lamé operator. J. Differ. Eqs. 228, 1–16 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Takemura, K.: On eigenvalues of the Lamé operator. http://arXiv.org.list/math.CA/0409247, 2007

  18. Takemura, K.: Private communication, December 2006

  19. Turbiner, A.: Quasi-exactly solvable differential equations. In: CRC Handbook of Lie group analysis of differential equations, Vol. 3, ed. N. H. Ibragimov, Boca Raton, FL: CRC Press, 1996

  20. Volkmer H.: Four remarks on eigenvalues of the Lamé equation. Analysis and Applic. 2(2), 161–175 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Whittaker, E.T., Watson, G.: A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions with an account of the principal transcendental functions. Reprint of the 4th (1927) edition, Cambridge Mathematical Library, Cambridge: Cambridge Univ. Press, 1996

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Shapiro.

Additional information

Communicated by N.A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borcea, J., Shapiro, B. Root Asymptotics of Spectral Polynomials for the Lamé Operator. Commun. Math. Phys. 282, 323–337 (2008). https://doi.org/10.1007/s00220-008-0551-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0551-0

Keywords

Navigation